RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Molecular structural descriptor‐assisted machine learning for organic photovoltaics with perylenediimide acceptors

      한글로보기

      https://www.riss.kr/link?id=A108963381

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Although organic photovoltaics (OPVs) have evolved over the last two decades, the discovery of new materials and optimization of numerous considerations for high‐performance devices remain challenging. To reduce these laborious processes and expedite the advancement of OPVs, we constructed machine learning (ML) models that predict photovoltaic parameters. We designed a unique descriptor that divides the molecular structure into smaller units and translates them into a concise matrix. This allows the ML model to easily track structural units and understand which units are important for predicting target performance, enabling the ML model to prioritize crucial units. Therefore, without requiring additional data from measurements or calculations, the ML models can extract chemical properties from molecular structural information and accurately predict the photovoltaic parameters. The ML models that predict the photovoltaic parameters, including the open‐circuit voltage, short‐circuit current density, fill factor, and power conversion efficiency, all show remarkably superior prediction performance, with Pearson correlation coefficients exceeding 0.68. Consequently, in this article, we propose a highly precise and reliable predictive OPV‐ML platform that can robustly screen for unnecessary experiments and accelerate OPV development.
      번역하기

      Although organic photovoltaics (OPVs) have evolved over the last two decades, the discovery of new materials and optimization of numerous considerations for high‐performance devices remain challenging. To reduce these laborious processes and expedit...

      Although organic photovoltaics (OPVs) have evolved over the last two decades, the discovery of new materials and optimization of numerous considerations for high‐performance devices remain challenging. To reduce these laborious processes and expedite the advancement of OPVs, we constructed machine learning (ML) models that predict photovoltaic parameters. We designed a unique descriptor that divides the molecular structure into smaller units and translates them into a concise matrix. This allows the ML model to easily track structural units and understand which units are important for predicting target performance, enabling the ML model to prioritize crucial units. Therefore, without requiring additional data from measurements or calculations, the ML models can extract chemical properties from molecular structural information and accurately predict the photovoltaic parameters. The ML models that predict the photovoltaic parameters, including the open‐circuit voltage, short‐circuit current density, fill factor, and power conversion efficiency, all show remarkably superior prediction performance, with Pearson correlation coefficients exceeding 0.68. Consequently, in this article, we propose a highly precise and reliable predictive OPV‐ML platform that can robustly screen for unnecessary experiments and accelerate OPV development.

      더보기

      다국어 초록 (Multilingual Abstract)

      Although organic photovoltaics (OPVs) have evolved over the last two decades, the discovery of new materials and optimization of numerous considerations for high-performance devices remain challenging. To reduce these laborious processes and expedite the advancement of OPVs, we constructed machine learning (ML) models that predict photovoltaic parameters. We designed a unique descriptor that divides the molecular structure into smaller units and translates them into a concise matrix. This allows the ML model to easily track structural units and understand which units are important for predicting target performance, enabling the ML model to prioritize crucial units. Therefore, without requiring additional data from measurements or calculations, the ML models can extract chemical properties from molecular structural information and accurately predict the photovoltaic parameters. The ML models that predict the photovoltaic parameters, including the open-circuit voltage, shortcircuit current density, fill factor, and power conversion efficiency, all show remarkably superior prediction performance, with Pearson correlation coefficients exceeding 0.68. Consequently, in this article, we propose a highly precise and reliable predictive OPV-ML platform that can robustly screen for unnecessary experiments and accelerate OPV development.
      번역하기

      Although organic photovoltaics (OPVs) have evolved over the last two decades, the discovery of new materials and optimization of numerous considerations for high-performance devices remain challenging. To reduce these laborious processes and expedite ...

      Although organic photovoltaics (OPVs) have evolved over the last two decades, the discovery of new materials and optimization of numerous considerations for high-performance devices remain challenging. To reduce these laborious processes and expedite the advancement of OPVs, we constructed machine learning (ML) models that predict photovoltaic parameters. We designed a unique descriptor that divides the molecular structure into smaller units and translates them into a concise matrix. This allows the ML model to easily track structural units and understand which units are important for predicting target performance, enabling the ML model to prioritize crucial units. Therefore, without requiring additional data from measurements or calculations, the ML models can extract chemical properties from molecular structural information and accurately predict the photovoltaic parameters. The ML models that predict the photovoltaic parameters, including the open-circuit voltage, shortcircuit current density, fill factor, and power conversion efficiency, all show remarkably superior prediction performance, with Pearson correlation coefficients exceeding 0.68. Consequently, in this article, we propose a highly precise and reliable predictive OPV-ML platform that can robustly screen for unnecessary experiments and accelerate OPV development.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼