The roles of environmental factors affecting on heterotrophic bacterial distribution at Hangam Bay and Masan Bay in which occurred frequently red tide, during June to November 1996 were investigated. The aquatic environment of Masan Bay and Haengam Ba...
The roles of environmental factors affecting on heterotrophic bacterial distribution at Hangam Bay and Masan Bay in which occurred frequently red tide, during June to November 1996 were investigated. The aquatic environment of Masan Bay and Haengam Bay showed difference in the contents of inorganic nutrients. Haengam Bay may be defined as nitrogen limited aquatic environment. On the other hand, Masan Bay appeared to the appropriate N/P molar ratio of mean 15.9 during the periods of study. By the results of simple regression, chlorophyll a showed significant correlation with precipitation (r=0.813, P<0.05) and phosphorus (r=0.846, P<0.05) at Haengam Bay, but not showed significant correlation with parameters at Masan Bay. The heterotrophic bacteria showed significant correlation with many environmental parameters at Masan Bay (Precipitation, r=0.990, P<0.01 ; NO₃-N, r=0.901, P<0.05 ; Dissolved inorganic nitrogen, r=0.899, P<0.05 ; N/P molar ratio, r=0.952, P<0.05 ; Salinity, r=-0.934, P<0.05) than Haengam Bay (SiO₃-Si, r=0.960, P<0.01). By the results of multiple regression, the chlorophyll a was varied with only 2 factors in Masan Bay (R²=0.100) and 3 factor in Haengam Bay (R²=0.903). The major factor which affected to chlorophyll a was SiO₃-Si (R²%=67.8) in Masan Bay, and -N/P (R²%=37.6) in Haengam Bay. The heterotrophic bacteria were varied with 4 factors in Masan Bay (R²=100) and 2 factor in Haengam Bay (R²%=0.878). The major factor, which affected to heterotrophic bacteria, was SiO₃-Si (R²%=42.3) and salinity (R²%=32.1) in Masan Bay, and SiO₃-Si (R²%=76.3) in Haengam Bay. Resultingly the influx of freshwater in Masan and Haengam Bay was enriched in inorganic nutrients, and plays an important role in the change of heteroterophic bacteria and chlorophyll a during early summer to autumn.