작물의 생산성 증가를 위해 염해 저항성 메커니즘을 이해하는 것이 중요하다. 식물의 염해 저항성에 관련된 유전자를 확보하기 위한 여러 가지의 선별방법이 개발되었다. 본 논문에서는 애...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A99562509
2013
English
KCI등재
학술저널
1-7(7쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
작물의 생산성 증가를 위해 염해 저항성 메커니즘을 이해하는 것이 중요하다. 식물의 염해 저항성에 관련된 유전자를 확보하기 위한 여러 가지의 선별방법이 개발되었다. 본 논문에서는 애...
작물의 생산성 증가를 위해 염해 저항성 메커니즘을 이해하는 것이 중요하다. 식물의 염해 저항성에 관련된 유전자를 확보하기 위한 여러 가지의 선별방법이 개발되었다. 본 논문에서는 애기장대의 cDNA 라이브리를 염해 감수성 효모인 cnb 돌연변이체에 삽입하여 염해 감수성 표현형을 회복하는 콜로니를 선발하였다. 이 선별방법을 통하여 34종의 cnb 돌연변이체의 염해 감수성을 회복하는 콜로니를 선별하였으며, 염기서열분석을 통하여 CaS와 AtSUMO1, AtHB-12 등 9종의 유전자임을 확인하였다. 이들 유전자 중 CaS의 발현이 염해 저항성을 증가시키는 것과 염해 처리에 의해 CaS의 유전자의 발현이 증가되는 것을 확인하였다. CaS 발현억제 형질전환체는 100 mM 염처리에 의하여 뿌리생장이 저해되었다. 또한 150 mM 염처리에 의하여 CaS 발현억제 형질전환체의 잎에서 백화현상을 나타내었다. 이러한 결과를 통하여 CaS 유전자가 효모와 식물에서 염해 저항성에 중요한 유전자임을 증명하였다.
다국어 초록 (Multilingual Abstract)
Understanding salt tolerance mechanisms is important for the increase of crop yields, and so, several screening approaches were developed to identify plant genes which are involved in salt tolerance of plants. Here, we transformed the Arabidopsis cDNA...
Understanding salt tolerance mechanisms is important for the increase of crop yields, and so, several screening approaches were developed to identify plant genes which are involved in salt tolerance of plants. Here, we transformed the Arabidopsis cDNA library into a salt-sensitive calcineurin (CaN)-deficient (cnbΔ) yeast mutant and isolated the colonies which can suppress salt-sensitive phenotype of cnbΔ mutant. Through this functional complementation screen, a total of 34 colonies functionally suppressed the salt-sensitive phenotype of cnbΔ yeast cells, and sequencing analysis revealed that these are 9 genes, including CaS, AtSUMO1and AtHB-12. Among these genes, the ectopic expression of CaSgene increased salt tolerance in yeast, and CaStranscript was up-regulated under high salinity conditions. CaS-antisense transgenic plants showed reduced root elongation under 100 mM NaCl treatment compared to the wild type plant, which survived under 150 mM NaCl treatment, whereas CaS-antisense transgenic plant leaves turned yellow under 150 mM NaCl treatment. These results indicate that the expression of CaS gene is important for stress tolerance in yeast and plants.
목차 (Table of Contents)
참고문헌 (Reference)
1 Liu, Q., "Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis" 10 : 1391-1406, 1998
2 Lippuner, V., "Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast" 271 : 12859-12866, 1996
3 Shi, H., "The putative plasma membrane Na(+)/H(+)antiporter SOS1 controls long-distance Na(+)transport in plants" 14 : 465-477, 2002
4 Forsburg, S. L, "The art and design of genetic screens : yeast" 2 : 659-668, 2001
5 Catala, R., "The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses" 19 : 2952-2966, 2007
6 Conti, L., "Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and-2 regulate salt stress responses in Arabidopsis" 20 : 2894-2908, 2008
7 Lois, L. M., "Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis" 15 : 1347-1359, 2003
8 Gao, D., "Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress" 134 : 898-908, 2004
9 Nagaoka, S., "Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis" 54 : 2231-2237, 2003
10 Wu, S. J., "SOS1, a genetic locus essential for salt tolerance and potassium acquisition" 8 : 617-627, 1996
1 Liu, Q., "Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis" 10 : 1391-1406, 1998
2 Lippuner, V., "Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast" 271 : 12859-12866, 1996
3 Shi, H., "The putative plasma membrane Na(+)/H(+)antiporter SOS1 controls long-distance Na(+)transport in plants" 14 : 465-477, 2002
4 Forsburg, S. L, "The art and design of genetic screens : yeast" 2 : 659-668, 2001
5 Catala, R., "The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses" 19 : 2952-2966, 2007
6 Conti, L., "Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and-2 regulate salt stress responses in Arabidopsis" 20 : 2894-2908, 2008
7 Lois, L. M., "Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis" 15 : 1347-1359, 2003
8 Gao, D., "Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress" 134 : 898-908, 2004
9 Nagaoka, S., "Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis" 54 : 2231-2237, 2003
10 Wu, S. J., "SOS1, a genetic locus essential for salt tolerance and potassium acquisition" 8 : 617-627, 1996
11 Naranjo, M. A., "Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants" 29 : 1890-1900, 2006
12 Tracy, F. E., "NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition" 31 : 1063-1073, 2008
13 Seki, M., "Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray" 31 : 279-292, 2002
14 Munns, R., "Mechanisms of salinity tolerance" 59 : 651-681, 2008
15 Espelund, M., "Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress" 2 : 241-252, 1992
16 Serrano, R., "Ion homeostasis during salt stress in plants" 13 : 399-404, 2001
17 Geiger, D., "Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities" 107 : 8023-8028, 2010
18 Zhou, J., "Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle" 63 : 591-608, 2007
19 Pouchkina-Stantcheva, N. N., "Functional divergence of former alleles in an ancient asexual invertebrate" 318 : 268-271, 2007
20 Forment, J., "Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants" 30 : 511-519, 2002
21 Yokoi, S., "Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response" 30 : 529-539, 2002
22 Tang, R. H., "Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis" 315 : 1423-1426, 2007
23 Reddy, A. S., "Coping with stresses : roles of calcium-and calcium/calmodulin-regulated gene expression" 23 : 2010-2032, 2011
24 Yamaguchi-Shinozaki, K., "Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants" 236 : 331-340, 1993
25 Liu, Y., "Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation" 585 : 630-634, 2011
26 Shin, D., "Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion" 323 : 534-540, 2004
27 Sakamoto, H., "Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions" 136 : 2734-2746, 2004
28 Mendoza, I., "Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells" 271 : 23061-23067, 1996
29 Staxen, I., "Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C" 96 : 1779-1784, 1999
30 Raghavendra, A. S., "ABA perception and signalling" 15 : 395-401, 2010
31 Godoy, J. A., "A tomato cDNA inducible by salt stress and abscisic acid : nucleotide sequence and expression pattern" 15 : 695-705, 1990
32 Yamaguchi-Shinozaki, K., "A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress" 6 : 251-264, 1994
33 Han, S., "A cell surface receptor mediates extracellular Ca(2+)sensing in guard cells" 425 : 196-200, 2003
Enhancement of the Thermostability of a Fibrinolytic Enzyme from Bacillus amyloliquefaciensCH51
mtDNA cytochrome b에 기초한 한국흑우의 계통유전학적 분석
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2027 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2021-01-01 | 평가 | 등재학술지 유지 (재인증) | ![]() |
2018-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2015-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2011-08-03 | 학술지명변경 | 외국어명 : Korean Journal of Life Science -> Journal of Life Science | ![]() |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2004-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | ![]() |
2003-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | ![]() |
2001-07-01 | 평가 | 등재후보학술지 선정 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.37 | 0.37 | 0.42 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.43 | 0.43 | 0.774 | 0.09 |