Purpose : Recent evidence suggests a possible role for leukocytes in brain injury following ischemia and reperfusion. This study examined the temporal profile of ischemic tissue damage and leukocyte response after transient middle cerebral artery occl...
Purpose : Recent evidence suggests a possible role for leukocytes in brain injury following ischemia and reperfusion. This study examined the temporal profile of ischemic tissue damage and leukocyte response after transient middle cerebral artery occlusion(MCAO) with reperfusion in the mouse. Methods : Focal cerebral ischemia was made by temporary occluding of the stem of the proximal MCA. Two groups of the mouse were investigated : (1) sham operation(n=10), and (2)those having the arterial occlusion released after 90 minute(n=20). By 4 hours(n=10) and 24 hours(n=10) after the onset of ischemia-reperfusion, fluorescein videoimages were under-taken in the pial venules of the mouse using a closed cranial window technique. Rhodamine 6G was administered as a $80-100{\mu}l/min$ i.v. loading dose and a $30-40{\mu}l/min$ i.v. maintenance dose in saline to selectively label circulating leukocytes. Neuropathologic evaluation for brain injury was accomplished using the histochemical stain 2,3,5-triphen-yltetrazolium chloride(TTC) and hematoxylin and eosin(H & E) stain. Results : The mean number of adherent leukocytes to cerebral venules in the 90 minutes MCAO and 24 hours reperfusion group were $306{\pm}24$ compared with $72{\pm}8$ in the sham operation group. In the TTC staining method, the cortical infarct affecting 34.8% of hemispheric volume were created in all of animals (n=10) undergoing 90 minute MCAO with 24 hours reperfusion, but the infarcted area were not found in the other(sham operation and 90 minute MCAO with 4 hours reperfusion)groups. In the H & E stain, the brain tissue following 90 minute MCAO with 4 hours reperfusion revealed only a pyknosis of the nuclei with shrunken cytoplasm, but infiltrated leukocytes were not observed. After 24 hours of reperfusion, a many leukocytes were infiltrated within parenchyma and blood vessles. Conclusions : These findings demonstrate the feasiblity of continous in vivo monitoring of leukocyte adherence in cerebral venules and suggest that reperfusion induced leukocyte adherence to venular endothelium may contribute to tissue injury following focal cerebral ischemia.