RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색

      한글로보기

      https://www.riss.kr/link?id=A105409392

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD provides detail descriptions of entities to public in RDF triple form. RDF triple is composed of subject, predicates, and objects and presents detail description for an entity. Links in LOD cloud, named identity links, are realized by asserting entities of different RDF triples to be identical. Currently, the identity link is provided with creating a link triple explicitly in which <owl:sameAs> associates its subject and object with source and target entities. Link triples are appended to LOD. With identity links, a knowledge achieves from an LOD can be expanded with different knowledge from different LODs. The goal of LOD cloud is providing opportunity of knowledge expansion to users.
      Appending link triples to LOD, however, has serious difficulties in discovering identity links between entities one by one notwithstanding the enormous scale of LOD. Newly added entities cannot be reflected to searching results until identity links heading for them are serialized and published to LOD cloud. Instead of creating enormous identity links, we propose LOD to prepare its own link policy. The link policy specifies a set of target LODs to link and constraints necessary to discover identity links to entities on target LODs. On searching, it becomes possible to access newly added entities and reflect them to searching results without any omissions by referencing the link policies. Link policy specifies a set of predicate pairs for discovering identity between associated entities in source and target LODs. For the link policy specification, we have suggested a set of vocabularies that conform to RDFS and OWL. Identity between entities is evaluated in accordance with a similarity of the source and the target entities’ objects which have been associated with the predicates’ pair in the link policy.
      We implemented a system “Change Acceptable In-Depth Searching System(CAIDS)”. With CAIDS, user’s searching request starts from depth_0 LOD, i.e. surface searching. Referencing the link policies of LODs, CAIDS proceeds in-depth searching, next LODs of next depths. To supplement identity links derived from the link policies, CAIDS uses explicit link triples as well. Following the identity links, CAIDS’s in-depth searching progresses. Content of an entity obtained from depth_0 LOD expands with the contents of entities of other LODs which have been discovered to be identical to depth_0 LOD entity. Expanding content of depth_0 LOD entity without user’s cognition of such other LODs is the implementation of knowledge expansion. It is the goal of LOD cloud. The more identity links in LOD cloud, the wider content expansions in LOD cloud. We have suggested a new way to create identity links abundantly and supply them to LOD cloud.
      Experiments on CAIDS performed against DBpedia LODs of Korea, France, Italy, Spain, and Portugal. They present that CAIDS provides appropriate expansion ratio and inclusion ratio as long as degree of similarity between source and target objects is 0.8 ~ 0.9. Expansion ratio, for each depth, depicts the ratio of the entities discovered at the depth to the entities of depth_0 LOD. For each depth, inclusion ratio illustrates the ratio of the entities discovered only with explicit links to the entities discovered only with link policies. In cases of similarity degrees with under 0.8, expansion becomes excessive and thus contents become distorted. Similarity degree of 0.8 ~ 0.9 provides appropriate amount of RDF triples searched as well.
      Experiments have evaluated confidence degree of contents which have been expanded in accordance with in-depth searching. Confidence degree of content is directly coupled with identity ratio of an entity, which means the degree of identit
      번역하기

      LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD ...

      LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD provides detail descriptions of entities to public in RDF triple form. RDF triple is composed of subject, predicates, and objects and presents detail description for an entity. Links in LOD cloud, named identity links, are realized by asserting entities of different RDF triples to be identical. Currently, the identity link is provided with creating a link triple explicitly in which <owl:sameAs> associates its subject and object with source and target entities. Link triples are appended to LOD. With identity links, a knowledge achieves from an LOD can be expanded with different knowledge from different LODs. The goal of LOD cloud is providing opportunity of knowledge expansion to users.
      Appending link triples to LOD, however, has serious difficulties in discovering identity links between entities one by one notwithstanding the enormous scale of LOD. Newly added entities cannot be reflected to searching results until identity links heading for them are serialized and published to LOD cloud. Instead of creating enormous identity links, we propose LOD to prepare its own link policy. The link policy specifies a set of target LODs to link and constraints necessary to discover identity links to entities on target LODs. On searching, it becomes possible to access newly added entities and reflect them to searching results without any omissions by referencing the link policies. Link policy specifies a set of predicate pairs for discovering identity between associated entities in source and target LODs. For the link policy specification, we have suggested a set of vocabularies that conform to RDFS and OWL. Identity between entities is evaluated in accordance with a similarity of the source and the target entities’ objects which have been associated with the predicates’ pair in the link policy.
      We implemented a system “Change Acceptable In-Depth Searching System(CAIDS)”. With CAIDS, user’s searching request starts from depth_0 LOD, i.e. surface searching. Referencing the link policies of LODs, CAIDS proceeds in-depth searching, next LODs of next depths. To supplement identity links derived from the link policies, CAIDS uses explicit link triples as well. Following the identity links, CAIDS’s in-depth searching progresses. Content of an entity obtained from depth_0 LOD expands with the contents of entities of other LODs which have been discovered to be identical to depth_0 LOD entity. Expanding content of depth_0 LOD entity without user’s cognition of such other LODs is the implementation of knowledge expansion. It is the goal of LOD cloud. The more identity links in LOD cloud, the wider content expansions in LOD cloud. We have suggested a new way to create identity links abundantly and supply them to LOD cloud.
      Experiments on CAIDS performed against DBpedia LODs of Korea, France, Italy, Spain, and Portugal. They present that CAIDS provides appropriate expansion ratio and inclusion ratio as long as degree of similarity between source and target objects is 0.8 ~ 0.9. Expansion ratio, for each depth, depicts the ratio of the entities discovered at the depth to the entities of depth_0 LOD. For each depth, inclusion ratio illustrates the ratio of the entities discovered only with explicit links to the entities discovered only with link policies. In cases of similarity degrees with under 0.8, expansion becomes excessive and thus contents become distorted. Similarity degree of 0.8 ~ 0.9 provides appropriate amount of RDF triples searched as well.
      Experiments have evaluated confidence degree of contents which have been expanded in accordance with in-depth searching. Confidence degree of content is directly coupled with identity ratio of an entity, which means the degree of identit

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼