RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Self-assembled pagoda-like nanostructure-induced vertically stacked split-ring resonators for polarization-sensitive dichroic responses

      한글로보기

      https://www.riss.kr/link?id=A108589419

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Stacked split-ring resonators (SSRR) arrays exhibiting polarization-sensitive dichroic responses in both visible and near-infrared wavelengths are realized over a centimeter-scale large area. The SSRR arrays are derived from pagoda-like nanorods fabricated from the self-assembly of a lamellae-forming polystyrene-b-poly (methyl methacrylate) copolymer (PS-b-PMMA) confined in cylindrical pores of anodized aluminum oxide (AAO) template. Along the nanorod direction, PS and PMMA nanodomains were alternately stacked with the same distance. Silver crescents and semi-hemispherical covers, which are essential for SSRR with the polarization sensitivity, were obliquely deposited on the single side of the nanorod after removing the AAO template and reactive-ion etching treatment. These sophisticated nanoscale architectures made by bottom-up fabrication can be applied to structural color, optical anti-counterfeiting, and commercial optical components in a large area.
      번역하기

      Stacked split-ring resonators (SSRR) arrays exhibiting polarization-sensitive dichroic responses in both visible and near-infrared wavelengths are realized over a centimeter-scale large area. The SSRR arrays are derived from pagoda-like nanorods fabri...

      Stacked split-ring resonators (SSRR) arrays exhibiting polarization-sensitive dichroic responses in both visible and near-infrared wavelengths are realized over a centimeter-scale large area. The SSRR arrays are derived from pagoda-like nanorods fabricated from the self-assembly of a lamellae-forming polystyrene-b-poly (methyl methacrylate) copolymer (PS-b-PMMA) confined in cylindrical pores of anodized aluminum oxide (AAO) template. Along the nanorod direction, PS and PMMA nanodomains were alternately stacked with the same distance. Silver crescents and semi-hemispherical covers, which are essential for SSRR with the polarization sensitivity, were obliquely deposited on the single side of the nanorod after removing the AAO template and reactive-ion etching treatment. These sophisticated nanoscale architectures made by bottom-up fabrication can be applied to structural color, optical anti-counterfeiting, and commercial optical components in a large area.

      더보기

      참고문헌 (Reference)

      1 M. C. K. Wiltshire, 18 : L315-, 2006

      2 D. Bae, 46 : 5301-, 2013

      3 W. A. Lopes, 414 : 735-, 2001

      4 J. Byun, 22 : 2028-, 2010

      5 D. Schurig, 314 : 977-, 2006

      6 N. Liu, 7 : 31-, 2008

      7 C. M. Soukoulis, 315 : 47-, 2007

      8 M. Kim, 26 : 14051-, 2018

      9 H. E. Lee, 556 : 360-, 2018

      10 F. Spreyer, 9 : 784-, 2022

      1 M. C. K. Wiltshire, 18 : L315-, 2006

      2 D. Bae, 46 : 5301-, 2013

      3 W. A. Lopes, 414 : 735-, 2001

      4 J. Byun, 22 : 2028-, 2010

      5 D. Schurig, 314 : 977-, 2006

      6 N. Liu, 7 : 31-, 2008

      7 C. M. Soukoulis, 315 : 47-, 2007

      8 M. Kim, 26 : 14051-, 2018

      9 H. E. Lee, 556 : 360-, 2018

      10 F. Spreyer, 9 : 784-, 2022

      11 M. Lee, 143 : 20725-, 2021

      12 V. M. Shalaev, 1 : 41-, 2007

      13 R. A. Shelby, 292 : 77-, 2001

      14 I. Kim, 39 : 89-, 2020

      15 C. Jung, 8 : 2022

      16 K. Song, 7 : 10730-, 2017

      17 S. Zhang, 14 : 6778-, 2006

      18 M. Wang, 21 : 3410-, 2021

      19 W. Jung, 592 : 54-, 2021

      20 S. Daqiqe Rezaei, 20 : 4422-, 2020

      21 C. Jung, 121 : 13013-, 2021

      22 J. K. Kim, 35 : 1325-, 2010

      23 A. C. Shi, 9 : 1398-, 2013

      24 M. Kim, 10 : 190-, 2018

      25 H. K. Choi, 1 : 015001-, 2017

      26 G. H. Lee, 12 : 46678-, 2020

      27 P. Hou, 48 : 272-, 2015

      28 M. Y. E. Yau, 50 : 8637-, 2017

      29 P. Dobriyal, 42 : 9082-, 2009

      30 C. Mijangos, 54–55 : 148-, 2016

      31 S. Vignolini, 24 : 1901430-, 2012

      32 M. Stefik, 44 : 5076-, 2015

      33 A. Alvarez-Fernandez, 9 : 2100175-, 2021

      34 Y. -H. Ting, 26 : 1684-, 2008

      35 A. Barranco, 76 : 59-, 2016

      36 D. J. Poxson, 93 : 101914-, 2008

      37 W. Ren, 32 : 1901430-, 2020

      38 P. Yu, 7 : 1800995-, 2019

      39 L. Feng, 32 : 1903787-, 2020

      40 H. Masuda, 268 : 1466-, 1995

      41 H. Masuda, 35 : L126-, 1996

      42 L. Zhang, 17 : 291-, 1998

      43 W. Lee, 114 : 7487-, 2014

      44 S. Kim, 28 : 1800197-, 2018

      45 P. B. Johnson, 6 : 4370-, 1972

      46 Chen Yixin ; Ai Bin ; Wong Zi Jing, "Soft optical metamaterials" 나노기술연구협의회 7 (7): 1-17, 2020

      47 김진곤 ; Jeong In Lee ; Dong Hyun Lee, "Self-Assembled Block Copolymers: Bulk to Thin Film" 한국고분자학회 16 (16): 267-292, 2008

      48 Eslami Sahand ; Palomba Stefano, "Integrated enhanced Raman scattering: a review" 나노기술연구협의회 8 (8): 1-17, 2021

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼