RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      출력층회귀 다층신경망의 숫자음 인식에 관한 연구 = A Study on the Spoken Digit Recognition of the Output Layer Recurrent Multi-layered Neural Network

      한글로보기

      https://www.riss.kr/link?id=A2011753

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We compose the output layer recurrent multi-layered neural network that returns the output of output layer in the multi-layered perceptron with 4 layers to the lower hidden layer and study on the comparison of the spoken digit recognition performance according to the variation of the number of neuron in the upper and lower hidden layer, and the predictive order, and the learning rate and self-recurrent coefficient of the state layer.
      By the experimental results, when the number of neuron in the lower hidden layer is
      more than the number of neuron in the upper hidden layer or two layers have the same
      number of neuron, this network improves in it's recognition ability. The predictive order
      doesn't contribute to the improvement of the recognition rate. In the case of the
      learning rate and self-recurrent coefficient, the recognition rate is increased at 0.0001
      and 0, respectively.
      번역하기

      We compose the output layer recurrent multi-layered neural network that returns the output of output layer in the multi-layered perceptron with 4 layers to the lower hidden layer and study on the comparison of the spoken digit recognition performance ...

      We compose the output layer recurrent multi-layered neural network that returns the output of output layer in the multi-layered perceptron with 4 layers to the lower hidden layer and study on the comparison of the spoken digit recognition performance according to the variation of the number of neuron in the upper and lower hidden layer, and the predictive order, and the learning rate and self-recurrent coefficient of the state layer.
      By the experimental results, when the number of neuron in the lower hidden layer is
      more than the number of neuron in the upper hidden layer or two layers have the same
      number of neuron, this network improves in it's recognition ability. The predictive order
      doesn't contribute to the improvement of the recognition rate. In the case of the
      learning rate and self-recurrent coefficient, the recognition rate is increased at 0.0001
      and 0, respectively.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼