Purpose: To investigate the in vitro effect of cyclosporine A (CsA)-induced senescence on human corneal endothelial cells (HCECs). Methods: HCECs were cultured and incubated with 0-100 μM CsA. Senescence-associated β–galactosidase (SA-β-gal) sta...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107049202
2020
Korean
KCI등재,SCOPUS,ESCI
학술저널
999-1009(11쪽)
0
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Purpose: To investigate the in vitro effect of cyclosporine A (CsA)-induced senescence on human corneal endothelial cells (HCECs). Methods: HCECs were cultured and incubated with 0-100 μM CsA. Senescence-associated β–galactosidase (SA-β-gal) sta...
Purpose: To investigate the in vitro effect of cyclosporine A (CsA)-induced senescence on human corneal endothelial cells (HCECs).
Methods: HCECs were cultured and incubated with 0-100 μM CsA. Senescence-associated β–galactosidase (SA-β-gal) staining was performed. Mitochondrial dehydrogenase activity was assessed using a WST-8 assay kit and mitochondrial membrane potential (ΔΨm) was measured using JC-1 dye. Intracellular and mitochondrial formation of reactive oxygen species (ROS) was measured with 2’,7’-dichlorodihydrofluorescein diacetate and MitoSOX probes. Intracellular and mitochondrial calcium levels were measured using Fluo-4 and Rhod-2, respectively. Protein expression was evaluated by Western blotting.
Results: CsA increased the percentage of SA-β-gal-positive cells (p = 0.003) and decreased mitochondrial dehydrogenase activity and ΔΨm in a dose-dependent manner (p = 0.029, p = 0.004). Intracellular and mitochondrial ROS levels increased during incubation with CsA (p = 0.005). CsA at 100 μM increased mitochondrial calcium levels (p = 0.001), whereas intracellular calcium levels decreased at 100 μM CsA (p = 0.029). CsA activated GSK3β and ERK1/2 and reduced ZO-1 expression.
Conclusions: CsA induces senescence in HCECs through oxidative stress and via mitochondria-, GSK3β-, and ERK1/2-dependent pathways. Thus, concentrations of CsA should be monitored.
국문 초록 (Abstract)
목적: 생체 외에서 배양된 사람 각막내피세포에서 cyclosporine A (CsA)로 인한 노화의 영향에 대해 알아보고자 하였다. 대상과 방법: 사람 각막내피세포를 배양하고 0-100 μM CsA와 incubation을 시행...
목적: 생체 외에서 배양된 사람 각막내피세포에서 cyclosporine A (CsA)로 인한 노화의 영향에 대해 알아보고자 하였다.
대상과 방법: 사람 각막내피세포를 배양하고 0-100 μM CsA와 incubation을 시행하였다. 노화 연관 베타 갈락토시다제(senescenceassociated β-Galactosidase, SA-β-gal) 염색을 시행하였다. WST-8 분석 키트를 사용하여 미토콘드리아 탈수소효소의 활성을 평가하고, JC-1 dye를 이용하여 미토콘드리아막 전위(ΔΨm)를 측정하였다. 세포 내와 미토콘드라아에서 활성 산소 형성을 측정하였다. 세포 내와 미토콘드리아의 칼슘 수치를 각각 Fluo-4와 Rhod-2를 통해 측정하였다. 단백질 발현은 웨스턴 블롯(western blot)에 의해 평가되었다.
결과: 농도 의존적으로 CsA는 SA-β-gal 양성 세포의 비율을 증가시켰고(p=0.003) 미토콘드리아 탈수소효소의 활성과 ΔΨm을 감소시켰다(p=0.029, p=0.004). 세포 내 및 미토콘드리아의 활성 산소는 CsA와 배양하는 동안 증가하였다(p=0.005). 100 μM의 CsA에서 미토콘드리아 칼슘 수치가 높아진 반면(p=0.001), 세포 내 칼슘 수치는 낮아졌다(p=0.029). CsA는 GSK3β와 ERK1/2를 활성화시키고 ZO-1 발현을 감소시켰다.
결론: 사람 각막내피세포에서 CsA는 산화 스트레스의 유도와 미토콘드리아, GSK3β 및 ERK1/2 경로를 통해 노화를 유도한다. 따라서 고농도의 CsA 사용시 주의하여 사용하여야 한다.
참고문헌 (Reference)
1 Yanai R, "Upregulation of ZO-1 in cultured human corneal epithelial cells by a peptide(PHSRN)corresponding to the second cell-binding site of fibronectin" 50 : 2757-2764, 2009
2 Engler C, "Unfolded protein response in fuchs endothelial corneal dystrophy : a unifying pathogenic pathway" 149 : 194-202.e2, 2010
3 Belin MW, "Topical cyclosporine in high-risk corneal transplants" 96 : 1144-1150, 1989
4 Tatlipinar S, "Topical ciclosporin in the treatment of ocular surface disorders" 89 : 1363-1367, 2005
5 Prigione A, "The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells" 28 : 721-733, 2010
6 Zoratti M, "The mitochondrial permeability transition" 1241 : 139-176, 1995
7 Whikehart DR, "The inhibition of sodium, potassium-stimulated ATPase and corneal swelling : the role played by polyols" 66 : 331-333, 1995
8 Kim E, "The effects of different culture media on human corneal endothelial cells" 55 : 5099-5108, 2014
9 Waring GO 3rd, "The corneal endothelium. Normal and pathologic structure and function" 89 : 531-590, 1982
10 Toussaint O, "Stress-induced premature senescence. Essence of life, evolution, stress, and aging" 908 : 85-98, 2000
1 Yanai R, "Upregulation of ZO-1 in cultured human corneal epithelial cells by a peptide(PHSRN)corresponding to the second cell-binding site of fibronectin" 50 : 2757-2764, 2009
2 Engler C, "Unfolded protein response in fuchs endothelial corneal dystrophy : a unifying pathogenic pathway" 149 : 194-202.e2, 2010
3 Belin MW, "Topical cyclosporine in high-risk corneal transplants" 96 : 1144-1150, 1989
4 Tatlipinar S, "Topical ciclosporin in the treatment of ocular surface disorders" 89 : 1363-1367, 2005
5 Prigione A, "The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells" 28 : 721-733, 2010
6 Zoratti M, "The mitochondrial permeability transition" 1241 : 139-176, 1995
7 Whikehart DR, "The inhibition of sodium, potassium-stimulated ATPase and corneal swelling : the role played by polyols" 66 : 331-333, 1995
8 Kim E, "The effects of different culture media on human corneal endothelial cells" 55 : 5099-5108, 2014
9 Waring GO 3rd, "The corneal endothelium. Normal and pathologic structure and function" 89 : 531-590, 1982
10 Toussaint O, "Stress-induced premature senescence. Essence of life, evolution, stress, and aging" 908 : 85-98, 2000
11 Hatou S, "Role of insulin in regulation of Na+-/K+-dependent ATPase activity and pump function in corneal endothelial cells" 51 : 3935-3942, 2010
12 Mao Z, "Replicatively senescent cells are arrested in G1 and G2 phases" 4 : 431-435, 2012
13 Shin YJ, "Rapamycin reduces reactive oxygen species in cultured human corneal endothelial cells" 36 : 1116-1122, 2011
14 Joyce NC, "Proliferative capacity of the corneal endothelium" 22 : 359-389, 2003
15 He Y, "Pro370Leu mutant myocilin impairs mitochondrial functions in human trabecular meshwork cells" 15 : 815-825, 2009
16 Peng TI, "Oxidative stress caused by mitochondrial calcium overload" 1201 : 183-188, 2010
17 Flanagan WM, "Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A" 352 : 803-807, 1991
18 Kwak IH, "Nuclear accumulation of globular actin as a cellular senescence marker" 64 : 572-580, 2004
19 Babcock DF, "Mitochondrial participation in the intracellular Ca2+ network" 136 : 833-844, 1997
20 Ardón F, "Mitochondrial inhibitors activate influx of external Ca(2+)in sea urchin sperm" 1787 : 15-24, 2009
21 Lin MT, "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases" 443 : 787-795, 2006
22 Galluzzi L, "Mitochondrial control of cellular life, stress, and death" 111 : 1198-1207, 2012
23 Mandavilli BS, "Mitochondrial DNA repair and aging" 509 : 127-151, 2002
24 Chen JH, "Methods of cellular senescence induction using oxidative stress" 371 : 179-189, 2007
25 Wu Q, "Mechanism of cyclosporine A nephrotoxicity : oxidative stress, autophagy, and signalings" 118 : 889-907, 2018
26 Severino J, "Is beta-galactosidase staining a marker of senescence in vitro and in vivo?" 257 : 162-171, 2000
27 Petit-Paitel A, "Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons" 4 : e5491-, 2009
28 Justo P, "Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis" 14 : 3072-3080, 2003
29 Robb-Gaspers LD, "Integrating cytosolic calcium signals into mitochondrial metabolic responses" 17 : 4987-5000, 1998
30 Deng Q, "High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts" 279 : 1050-1059, 2004
31 Simpson PB, "High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes" 272 : 22654-22661, 1997
32 Patel S, "Glycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword?" 32 : 803-808, 2004
33 Berzal S, "GSK3, snail, and adhesion molecule regulation by cyclosporine A in renal tubular cells" 127 : 425-437, 2012
34 Caires A, "Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats" 51 : e6373-, 2017
35 Krouwer VJ, "Endothelial cell senescence is associated with disrupted cell-cell junctions and increased monolayer permeability" 4 : 12-, 2012
36 Di Lernia V, "Effectiveness and safety of cyclosporine in pediatric plaque psoriasis : a multicentric retrospective analysis" 27 : 395-398, 2016
37 Koppelstaetter C, "Effect of cyclosporine, tacrolimus and sirolimus on cellular senescence in renal epithelial cells" 48 : 86-92, 2018
38 Chifflet S, "Early and late calcium waves during wound healing in corneal endothelial cells" 20 : 28-37, 2012
39 Cagnol S, "ERK and cell death : mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence" 277 : 2-21, 2010
40 Joshi DC, "Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons" 51 : 2704-, 2011
41 Choi WS, "Cytotoxicity of ganciclovir on cultured human corneal endothelial cells" 18 : 813-820, 2013
42 Shin YJ, "Cysteamine suppresses human peripheral blood mononuclear cells--human corneal endothelial cell reaction via reactive oxygen species reduction" 17 : 3371-3378, 2011
43 O'Connell S, "Cyclosporine A-induced oxidative stress in human renal mesangial cells : a role for ERK 1/2MAPK signaling" 126 : 101-113, 2012
44 Kim HS, "Cyclosporine A induces apoptotic and autophagic cell death in rat pituitary GH3 cells" 9 : e108981-, 2014
45 Lallemand F, "Cyclosporine A delivery to the eye : a comprehensive review of academic and industrial efforts" 117 : 14-28, 2017
46 van der Toorn M, "Cyclosporin A-induced oxidative stress is not the consequence of an increase in mitochondrial membrane potential" 274 : 3003-3012, 2007
47 Werneck MB, "Cyclosporin A inhibits colon cancer cell growth independently of the calcineurin pathway" 11 : 3997-4008, 2012
48 Afshari NA, "Clinical study of Fuchs corneal endothelial dystrophy leading to penetrating keratoplasty : a 30-year experience" 124 : 777-780, 2006
49 Bourne WM, "Central corneal endothelial cell changes over a ten-year period" 38 : 779-782, 1997
50 Rusnak F, "Calcineurin : form and function" 80 : 1483-1521, 2000
51 Mammone T, "Apoptotic cell death increases with senescence in normal human dermal fibroblast cultures" 30 : 903-909, 2006
52 Toussaint O, "Aging as a multi-step process characterized by a lowering of entropy production leading the cell to a sequence of defined stages. II. Testing some predictions on aging human fibroblasts in culture" 65 : 65-83, 1992
53 Pérez-Rico C, "05% cyclosporine A on corneal endothelium in patients with dry eye disease" 6 : 471-474, 2013
치료 중단 후 1년 이상 재발 이력이 없는 결절맥락막혈관병증 환자의 임상특징
한국인 녹내장 환자에서 브린졸라미드 1.0%/브리모니딘 0.2% 복합제제의 알레르기 임상양상
속목동맥 폐쇄의 치료를 위한 혈전제거술 후 발생한 안와경색증후군
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | ![]() |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | ![]() |
2013-01-01 | 평가 | 등재 1차 FAIL (등재유지) | ![]() |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2007-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | ![]() |
2006-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | ![]() |
2005-01-01 | 평가 | 등재후보학술지 유지 (등재후보1차) | ![]() |
2003-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.22 | 0.22 | 0.22 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.23 | 0.23 | 0.366 | 0.02 |