RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      압출법을 이용한 골대체제용 다공성 인산칼슘 세라믹 개발 = Porous Calcium Phosphate Ceramics Developed by Extrusion Method for Bone Substitutes

      한글로보기

      https://www.riss.kr/link?id=A103814447

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Bone growth into a porous structure can be accelerated by the control of size, shape, volume and interconnectivity of the pores. The 3-dimensional interconnectivity of pore structures is one of important features for bone substitutes and tissue engineering scaffolds. The 3-D interconnected porous calcium phosphate ceramics were prepared using an extrusion method with a syringe in this study. The porosity and compressive strength were carefully examined upon the addition of PMMA (poly-methyl methacrylate) beads and HAp (hydroxyaptite) in a DCPD (dicalcium phosphate dehydrate-CN(calcium nitrate solution) system. Highly porous calcium phosphate ceramics having good compressive strength were obtained using a syringe extrusion method with PMMA beads and HAp. The highly macro- and microporous structured samples were obtained by the addition of PMMA beads and the reaction of DCPD-CN, respectively.
      The PMMA beads played the role of a sacrificial template for relatively large pores. The DCPD-calcium reaction generated the micro-pores and channels and connected the large pores which were formed by PMMA beads. The addition of HAp were significantly increased the compressive strength with decreasing porosity. The addition of HAp were also enhanced the phase transformation of calcium phosphates (TCP, CaO, etc) to HAp crystalline. The control of HAp formation can be applied for the control of the biodegradation rate of calcium phosphate. These porous calcium phosphate ceramics with high porosity and compressive strength can be applied for dental and orthopedic areas as a bone substitute materials
      번역하기

      Bone growth into a porous structure can be accelerated by the control of size, shape, volume and interconnectivity of the pores. The 3-dimensional interconnectivity of pore structures is one of important features for bone substitutes and tissue engine...

      Bone growth into a porous structure can be accelerated by the control of size, shape, volume and interconnectivity of the pores. The 3-dimensional interconnectivity of pore structures is one of important features for bone substitutes and tissue engineering scaffolds. The 3-D interconnected porous calcium phosphate ceramics were prepared using an extrusion method with a syringe in this study. The porosity and compressive strength were carefully examined upon the addition of PMMA (poly-methyl methacrylate) beads and HAp (hydroxyaptite) in a DCPD (dicalcium phosphate dehydrate-CN(calcium nitrate solution) system. Highly porous calcium phosphate ceramics having good compressive strength were obtained using a syringe extrusion method with PMMA beads and HAp. The highly macro- and microporous structured samples were obtained by the addition of PMMA beads and the reaction of DCPD-CN, respectively.
      The PMMA beads played the role of a sacrificial template for relatively large pores. The DCPD-calcium reaction generated the micro-pores and channels and connected the large pores which were formed by PMMA beads. The addition of HAp were significantly increased the compressive strength with decreasing porosity. The addition of HAp were also enhanced the phase transformation of calcium phosphates (TCP, CaO, etc) to HAp crystalline. The control of HAp formation can be applied for the control of the biodegradation rate of calcium phosphate. These porous calcium phosphate ceramics with high porosity and compressive strength can be applied for dental and orthopedic areas as a bone substitute materials

      더보기

      참고문헌 (Reference)

      1 박정언, "무가압분말 충전성 형법에 의한 다공성 세라믹스의 제조 및 특성" 36 (36): 662-670, 1999

      2 강인철, "다중압출공정을 이용한 알루미나 연속다공질체 제조 및 그의 생체친화성 평가를 위한 In-vitro, In-vivo 실험" 한국세라믹학회 41 (41): 13-13, 2004

      3 홍재민, "고효율 3차원 나노 구조 분리막"

      4 L. L. HENCH, "Third-generation biomedical materials" 295 : 1014-, 2002

      5 K. F. LEONG, "Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs" 24 : 2363-, 2003

      6 Motchiro Uo, "Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses" 19 : 2277-2284, 1998

      7 Jung-Soo Ha, "Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads" 한국세라믹학회 40 (40): 4-4, 2003

      8 N.O. Engin, "Preparation of porous Ca10(P04)б (OH)2 and Caз(Р04)2 bioceramics" 83 (83): 1581-1584, 2000

      9 이병택, "PMMA를 이용한 다공질 β-TCP 골충진제 제조 및 생체적합성 평가" 한국재료학회 17 (17): 318-322, 2007

      10 I. R. GIBSON, "Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite" 59 : 697-, 2002

      1 박정언, "무가압분말 충전성 형법에 의한 다공성 세라믹스의 제조 및 특성" 36 (36): 662-670, 1999

      2 강인철, "다중압출공정을 이용한 알루미나 연속다공질체 제조 및 그의 생체친화성 평가를 위한 In-vitro, In-vivo 실험" 한국세라믹학회 41 (41): 13-13, 2004

      3 홍재민, "고효율 3차원 나노 구조 분리막"

      4 L. L. HENCH, "Third-generation biomedical materials" 295 : 1014-, 2002

      5 K. F. LEONG, "Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs" 24 : 2363-, 2003

      6 Motchiro Uo, "Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses" 19 : 2277-2284, 1998

      7 Jung-Soo Ha, "Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads" 한국세라믹학회 40 (40): 4-4, 2003

      8 N.O. Engin, "Preparation of porous Ca10(P04)б (OH)2 and Caз(Р04)2 bioceramics" 83 (83): 1581-1584, 2000

      9 이병택, "PMMA를 이용한 다공질 β-TCP 골충진제 제조 및 생체적합성 평가" 한국재료학회 17 (17): 318-322, 2007

      10 I. R. GIBSON, "Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite" 59 : 697-, 2002

      11 H.X. Peng, "Microstructure of ceramic forms" 20 : 807-813, 2000

      12 Marek Potoczek, "Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose" 35 (35): 2249-2254, 2009

      13 N. O. ENGIN, "Manufacture of macroporous calcium hydroxyapatite bioceramics" 19 : 2569-, 1999

      14 Takafumi Kanazawa, "Inorganic phosphate materials" 52 : 35-36, 1989

      15 Antia A. Ignatius, "In vitro biocompatibility of resorbable experimental glass ceramics for bone substitutes" 55 : 285-294, 2001

      16 S.H. Li, "Fractal perimeters of polishing-induced pull-outs polished cross sections of plasmasprayed yttria-stabilized zirconia coatings" 86 (86): 65-72, 2003

      17 K. Jamuna-Thevi, "Development of macroporous calcium phosphate scaffold processed via microwave rapid drying" 29 (29): 1732-1740, 2009

      18 S. V. Dorozhkin, "Bioceramics based on calcium orthophosphates (review)" 64 (64): 442-447, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-03-28 학회명변경 한글명 : 생체재료학회 -> 한국생체재료학회
      영문명 : 미등록 -> The Korean Society For Biomaterials
      KCI등재후보
      2005-03-28 학술지등록 한글명 : 생체재료학회지
      외국어명 : Biomaterials Research
      KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.23 0.511 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼