RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      레이저유도 플라즈마 분광법을 이용한 폐금속 분류를 위한 추정 연성정보 기반의 최빈 분류 기술 = Estimated Soft Information based Most Probable Classification Scheme for Sorting Metal Scraps with Laser-induced Breakdown Spectroscopy

      한글로보기

      https://www.riss.kr/link?id=A105250110

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구에서는 레이저유도 플라즈마 분광법(Laser induced breakdown spectroscopy, LIBS) 기반의 금속 종류별 스펙트럼 데이터를 이용하여 연성정보(soft information)를 추정하고 최빈 클래스로 분류하는(most probable classification) 금속 분류 방법을 제안한다. 폐금속 자원과 같이 사전 정보가 없는 금속을 분류하는 경우 몇 가지 핵심 구성성분에 대한 정량 분석을 통해서 클래스를 추정하는 방법이 효율적이다. 이에 따라 부분 집합 기반의 부분최소제곱회귀법(Partial Least Square Regression, PLSR)을 이용하여 LIBS 검출 스펙트럼으로부터 각 성분의 농도를 독립적으로 신뢰성 있게 추정하고, 인증 표준물질(CRM) 등 알려진 모집합의 농도정보에 기반하여 최고 확률을 갖도록 분류하는 기술을 제안한다. 샘플 스펙트럼들의 다변량 분석을 통해서 여러 성분의 추정 농도를 다변량 정규 분포를 갖는 것으로 가정하고 통합(Joint) 추정 연성정보를 구할 수 있으며, 이를 활용한 최빈 확률 검출이나 추가적인 사전 정보의 결합 등을 통해서 분류 성능을 향상시킬 수 있다. 제안된 기술의 평가를 위해서 9가지 종류의 CRM 금속시료의 LIBS 스펙트럼 데이터를 사용하며, 부분 집합 기반의 PLSR 농도 추정 기술을 기반으로 단변량 혹은 다변량 정규 분포 연성 정보추정을 통해 미지 금속의 검출과 연성 정보의 검출 등을 테스트 하였다. 또한 방사형 차트(Radar chart)를 이용하여 추정된 농도와 획득한 연성정보를 효과적으로 시각화함으로써 기존 라이브러리에 포함된 부분 집합의 금속과 비교하여 해당 금속과의 유사성을 그래프를 통해 추정할 수 있다.
      번역하기

      본 연구에서는 레이저유도 플라즈마 분광법(Laser induced breakdown spectroscopy, LIBS) 기반의 금속 종류별 스펙트럼 데이터를 이용하여 연성정보(soft information)를 추정하고 최빈 클래스로 분류하는(mo...

      본 연구에서는 레이저유도 플라즈마 분광법(Laser induced breakdown spectroscopy, LIBS) 기반의 금속 종류별 스펙트럼 데이터를 이용하여 연성정보(soft information)를 추정하고 최빈 클래스로 분류하는(most probable classification) 금속 분류 방법을 제안한다. 폐금속 자원과 같이 사전 정보가 없는 금속을 분류하는 경우 몇 가지 핵심 구성성분에 대한 정량 분석을 통해서 클래스를 추정하는 방법이 효율적이다. 이에 따라 부분 집합 기반의 부분최소제곱회귀법(Partial Least Square Regression, PLSR)을 이용하여 LIBS 검출 스펙트럼으로부터 각 성분의 농도를 독립적으로 신뢰성 있게 추정하고, 인증 표준물질(CRM) 등 알려진 모집합의 농도정보에 기반하여 최고 확률을 갖도록 분류하는 기술을 제안한다. 샘플 스펙트럼들의 다변량 분석을 통해서 여러 성분의 추정 농도를 다변량 정규 분포를 갖는 것으로 가정하고 통합(Joint) 추정 연성정보를 구할 수 있으며, 이를 활용한 최빈 확률 검출이나 추가적인 사전 정보의 결합 등을 통해서 분류 성능을 향상시킬 수 있다. 제안된 기술의 평가를 위해서 9가지 종류의 CRM 금속시료의 LIBS 스펙트럼 데이터를 사용하며, 부분 집합 기반의 PLSR 농도 추정 기술을 기반으로 단변량 혹은 다변량 정규 분포 연성 정보추정을 통해 미지 금속의 검출과 연성 정보의 검출 등을 테스트 하였다. 또한 방사형 차트(Radar chart)를 이용하여 추정된 농도와 획득한 연성정보를 효과적으로 시각화함으로써 기존 라이브러리에 포함된 부분 집합의 금속과 비교하여 해당 금속과의 유사성을 그래프를 통해 추정할 수 있다.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼