RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      CRM을 위한 은닉 마코프 모델과 유사도 검색을 사용한 시계열 데이터 예측

      한글로보기

      https://www.riss.kr/link?id=A101700636

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are examined by use of Hidden Markov Model and Likelihood and future direction of the data movement is determined. Query sequence is modeled by Hidden Markov Modeling and then the model is examined over the pre-recorded time-series to find the subsequence which has the greatest similarity between the model and the extracted subsequence. The similarity is evaluated by likelihood. When the best subsequence is chosen, the next portion of the subsequence is used to predict the next phase of the data movement. A number of experiments with different parameters have been conducted to confirm the validity of the method. We used KOSPI to verify suggested method.
      번역하기

      Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are...

      Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are examined by use of Hidden Markov Model and Likelihood and future direction of the data movement is determined. Query sequence is modeled by Hidden Markov Modeling and then the model is examined over the pre-recorded time-series to find the subsequence which has the greatest similarity between the model and the extracted subsequence. The similarity is evaluated by likelihood. When the best subsequence is chosen, the next portion of the subsequence is used to predict the next phase of the data movement. A number of experiments with different parameters have been conducted to confirm the validity of the method. We used KOSPI to verify suggested method.

      더보기

      참고문헌 (Reference)

      1 Y. Chen, "Time-series forecasting using flexible neural tree model" 17 (17): 219-235, 2005

      2 C. Chatfield, "Time Series Forecasting with Neural Networks" 419-427, 1998

      3 N. G. Pavlidis, "Time Series Forecasting Methodology for Multiple-Step-Ahead Prediction" 456-461, 2005

      4 S. Singh, "Pattern Modelling in time-series forecasting" 31 (31): 49-66, 2000

      5 D. Zhang, "NonLinear Time Series Forecasting with Dynamic RBF Neural Network" 6988-6993, 2008

      6 A. Sorjamaa, "Mutual Information and k-Nearest Neighbors Approximator for Time Series Prediction" 553-558, 2005

      7 A. Sorjamaa, "Methodology for long-term prediction of time series" 70 (70): 2861-2869, 2007

      8 C. Bahlmann, "Measuring Hmm Similarity with the Bayes Probability of Error and its Application to Online Handwriting Recognition" 406-411, 2001

      9 C. P. Papageorgiou, "High Frequency Time Series Analysis and Prediction using Markov Models" 182-185, 1997

      10 J. Hamaker, "Bayesian Information criterion for automatic model selection" Mississippi State University 1999

      1 Y. Chen, "Time-series forecasting using flexible neural tree model" 17 (17): 219-235, 2005

      2 C. Chatfield, "Time Series Forecasting with Neural Networks" 419-427, 1998

      3 N. G. Pavlidis, "Time Series Forecasting Methodology for Multiple-Step-Ahead Prediction" 456-461, 2005

      4 S. Singh, "Pattern Modelling in time-series forecasting" 31 (31): 49-66, 2000

      5 D. Zhang, "NonLinear Time Series Forecasting with Dynamic RBF Neural Network" 6988-6993, 2008

      6 A. Sorjamaa, "Mutual Information and k-Nearest Neighbors Approximator for Time Series Prediction" 553-558, 2005

      7 A. Sorjamaa, "Methodology for long-term prediction of time series" 70 (70): 2861-2869, 2007

      8 C. Bahlmann, "Measuring Hmm Similarity with the Bayes Probability of Error and its Application to Online Handwriting Recognition" 406-411, 2001

      9 C. P. Papageorgiou, "High Frequency Time Series Analysis and Prediction using Markov Models" 182-185, 1997

      10 J. Hamaker, "Bayesian Information criterion for automatic model selection" Mississippi State University 1999

      11 M. Azzouzi, "Analysing time series structure with Hidden Markov Models" 402-408, 1998

      12 P. Cortez, "A Neural Network Based Time Series Forecasting System" 2689-2693, 1995

      13 A. Panuccio, "A Hidden Markov Model-based approach to sequential data clustering. in: Structural, Syntactic and Statistical Pattern Recognition" Springer 734-742, 2002

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.44 0.44 0.44
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.38 0.58 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼