RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Concrete Crack Detection with Dense Block and SE Attention Mode

      한글로보기

      https://www.riss.kr/link?id=T16840918

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to enhance the accuracy and robustness of the current crack detection algorithm, we propose an improved algorithm based on FC-Densenet(Fully Convolutional Densenet), named the Densely Connected Network with Attention Mode(DCAN), for pixel-...

      In order to enhance the accuracy and robustness of the current crack detection
      algorithm, we propose an improved algorithm based on FC-Densenet(Fully
      Convolutional Densenet), named the Densely Connected Network with Attention
      Mode(DCAN), for pixel-level crack detection. We have incorporated SE
      attention modules at five positions within the FC-Densenet framework.
      Additionally, we have collected a private dataset specifically focusing on tiny
      cracks, which closely resembles real-world crack scenarios. To validate the
      effectiveness of our method, we conducted a series of experiments on three
      publicly available crack datasets as well as our private dataset. Compared to the
      baseline neural network, our proposed approach demonstrates superior
      performance across six evaluation metrics. We observed that as the dataset size
      increases, the advantages of our method become more pronounced in terms of
      the mIoU and F1 metrics. For instance, on the Crack500 and Cross datasets,
      our method achieved F1 scores of 83.24 and 80.40, respectively. Additionally,
      the mIoU scores reached 71.11 and 68.80 on these two datasets, respectively.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼