RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Qualitative study of the fractional order nonlinear chaotic model: electronic realization and secure data enhancement

      한글로보기

      https://www.riss.kr/link?id=A107271079

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this work, we explore the superposition of two well-known chaotic oscillators, namely, the Duffing double-well and the forced van der Pol with the fractional order derivative. The proportional fractional derivative has been taken for numerical simulations and highly chaotic solution to improve some information of security systems has been found. The existence and the uniqueness of a super system are stated in the form of theorems using the Lipschitz condition locally. The qualitative properties of chaotic dynamics are described by mean of Lyapunov exponent (LE), eigenvalues, bifurcation and Poincaré maps. The analog circuit is also intended, with the help of different physical instruments, to validate the superposition of chaotic systems. The randomness level of a superposition chaotic system is tested via standard test suite, and the qualified set of a 32-bit array with high haphazardness is used for encryption as well as decryption. Furthermore, a security analysis is performed using different parameters, such as the uncertainty, similarity etc. The outcomes for the properties, time evolution, phase portrait, and oscilloscopic views are presented in tabulated and graphical forms.
      번역하기

      In this work, we explore the superposition of two well-known chaotic oscillators, namely, the Duffing double-well and the forced van der Pol with the fractional order derivative. The proportional fractional derivative has been taken for numerical simu...

      In this work, we explore the superposition of two well-known chaotic oscillators, namely, the Duffing double-well and the forced van der Pol with the fractional order derivative. The proportional fractional derivative has been taken for numerical simulations and highly chaotic solution to improve some information of security systems has been found. The existence and the uniqueness of a super system are stated in the form of theorems using the Lipschitz condition locally. The qualitative properties of chaotic dynamics are described by mean of Lyapunov exponent (LE), eigenvalues, bifurcation and Poincaré maps. The analog circuit is also intended, with the help of different physical instruments, to validate the superposition of chaotic systems. The randomness level of a superposition chaotic system is tested via standard test suite, and the qualified set of a 32-bit array with high haphazardness is used for encryption as well as decryption. Furthermore, a security analysis is performed using different parameters, such as the uncertainty, similarity etc. The outcomes for the properties, time evolution, phase portrait, and oscilloscopic views are presented in tabulated and graphical forms.

      더보기

      참고문헌 (Reference)

      1 A. Boubellouta, 48 (48): 211-, 2019

      2 S. Mobayen, 43 (43): 1-, 2019

      3 A. Wolf, 16 (16): 285-, 1985

      4 S. Vaidyanathan, 8 (8): 156-, 2015

      5 L. Liu, 42 (42): 2-, 2007

      6 T. T. Hartley, 42 (42): 485-, 1995

      7 N.A. Khan, 38 (38): 1279-, 2019

      8 G. Chen, 9 (9): 1465-, 1999

      9 I. Grigorenko, 96 (96): 199902-, 2006

      10 N.A. Khan, 72 (72): 125004-, 2020

      1 A. Boubellouta, 48 (48): 211-, 2019

      2 S. Mobayen, 43 (43): 1-, 2019

      3 A. Wolf, 16 (16): 285-, 1985

      4 S. Vaidyanathan, 8 (8): 156-, 2015

      5 L. Liu, 42 (42): 2-, 2007

      6 T. T. Hartley, 42 (42): 485-, 1995

      7 N.A. Khan, 38 (38): 1279-, 2019

      8 G. Chen, 9 (9): 1465-, 1999

      9 I. Grigorenko, 96 (96): 199902-, 2006

      10 N.A. Khan, 72 (72): 125004-, 2020

      11 W. Ahmad, 37 (37): 1110-, 2001

      12 J. Sprott, 65 (65): 537-, 1997

      13 N.A. Khan, 95 (95): 065217-, 2020

      14 M. Kim, 52 (52): 1953-, 2017

      15 M. Sciamanna, 9 (9): 151-, 2015

      16 K. Usha, 108 : 25-, 2018

      17 S. Chen, 28 (28): 2359-, 2017

      18 M. Akhmet, 145 : 230-, 2014

      19 C. E. Shannon, 28 (28): 656-, 1949

      20 D. R. Anderson, 10 (10): 109-, 2015

      21 Y. Zhang, 2016 : 2016

      22 S. Vaidyanathan, 10 : 1-, 2015

      23 Y. Ueda, 28 (28): 217-, 1981

      24 M. A. Qureshi, "Zenodo"

      25 I. Podlubny, "Fractional Diferential Equations: An Introduction to Fractional Derivatives, Fractional Diferential Equations, to Methods of Their Solution and Some of Their Applications" Elsevier 1998

      26 G. Dufng, "Erzwungene Schwingungen Bei Veränderlicher Eigenfrequenz Und Ihre Technische Bedeutung" F. Vieweg & sohn 1918

      27 L. Kocarev, "Chaos-Based Cryptography: Theory, Algorithms and Applications" Springer Science & Business Media 2011

      28 "C.R. Comfort"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.15 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.2 0.26 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼