RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법

      한글로보기

      https://www.riss.kr/link?id=A82415554

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.
      번역하기

      In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates ...

      In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

      더보기

      참고문헌 (Reference)

      1 염금수, "공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법" 제주 KAL 호텔 365-367, 2010

      2 Toro, E.F, "Riemann Solver sand Numerical Methods for Fluid Dynamics: A Practical Introduction" Springer-Verlag 1999

      3 Paillère, H, "On the Extension of the AUSM+ Scheme to Compressible Two-Fluid Models" 32 : 891-916, 2003

      4 Ivings, M.J, "On Riemann Solvers for Compressible Liquids" 28 : 395-418, 1998

      5 Saurel, R, "Modelling Phase Transition in Metastable Liquids: Application to Cavitating and Flashing Flows" 607 : 313-350, 2008

      6 Evje, S, "Hybrid Flux-Splitting Schemes for a Common Two-Fluid Model" 192 : 175-210, 2003

      7 Colella, P, "Efficient Solution Algorithm for the Riemann Problem for Real Gases" 59 : 264-289, 1985

      8 Andrianov, N, "A Simple Method for Compressible Multiphase Mixtures and Interface" 41 : 109-131, 2003

      9 Toro, E.F, "A Fast Riemann Solver with Constant Covolume Applied to the Random Choice Method" 9 : 1145-1164, 1989

      1 염금수, "공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법" 제주 KAL 호텔 365-367, 2010

      2 Toro, E.F, "Riemann Solver sand Numerical Methods for Fluid Dynamics: A Practical Introduction" Springer-Verlag 1999

      3 Paillère, H, "On the Extension of the AUSM+ Scheme to Compressible Two-Fluid Models" 32 : 891-916, 2003

      4 Ivings, M.J, "On Riemann Solvers for Compressible Liquids" 28 : 395-418, 1998

      5 Saurel, R, "Modelling Phase Transition in Metastable Liquids: Application to Cavitating and Flashing Flows" 607 : 313-350, 2008

      6 Evje, S, "Hybrid Flux-Splitting Schemes for a Common Two-Fluid Model" 192 : 175-210, 2003

      7 Colella, P, "Efficient Solution Algorithm for the Riemann Problem for Real Gases" 59 : 264-289, 1985

      8 Andrianov, N, "A Simple Method for Compressible Multiphase Mixtures and Interface" 41 : 109-131, 2003

      9 Toro, E.F, "A Fast Riemann Solver with Constant Covolume Applied to the Random Choice Method" 9 : 1145-1164, 1989

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-06-16 학술지명변경 외국어명 : Jpurnal of Computatuonal Fluids Engineering -> Korean Society of Computatuonal Fluids Engineering KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.16 0.15 0.405 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼