RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      수중 항법을 위한 ROS 기반 시뮬레이터를 이용한 센서 데이터 수집 = Sensor Data Collection by Using ROS-based Simulator for Underwater Navigation

      한글로보기

      https://www.riss.kr/link?id=A108546824

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Simultaneous localization and mapping (SLAM) is a navigation technology used in scenarios where the surrounding environment is unknown. Although SLAM technology is highly advanced in atmospheric environments, it is not highly effective in underwater environments because of various constraints. In addition, experiments in underwater environments involve higher risks and costs compared with other environments. Therefore, in this paper, a simulator-based data collection method was proposed to reduce risks and costs for effective experimentation. By using the proposed method, sensor data can be acquired by adding and generating paths to control the movement of underwater robots depending on research purposes. In addition, collected data can be saved in various formats to facilitate data processing. Moreover, an experiment was conducted to verify that SLAM can be performed using the data collected.
      번역하기

      Simultaneous localization and mapping (SLAM) is a navigation technology used in scenarios where the surrounding environment is unknown. Although SLAM technology is highly advanced in atmospheric environments, it is not highly effective in underwater e...

      Simultaneous localization and mapping (SLAM) is a navigation technology used in scenarios where the surrounding environment is unknown. Although SLAM technology is highly advanced in atmospheric environments, it is not highly effective in underwater environments because of various constraints. In addition, experiments in underwater environments involve higher risks and costs compared with other environments. Therefore, in this paper, a simulator-based data collection method was proposed to reduce risks and costs for effective experimentation. By using the proposed method, sensor data can be acquired by adding and generating paths to control the movement of underwater robots depending on research purposes. In addition, collected data can be saved in various formats to facilitate data processing. Moreover, an experiment was conducted to verify that SLAM can be performed using the data collected.

      더보기

      참고문헌 (Reference)

      1 손홍철 ; 문채주 ; 김동섭, "전력선 용량증대를 위한 해저케이블 설계" 한국전자통신학회 17 (17): 77-84, 2022

      2 김선영 ; 강창호, "영상 식별 및 항법 정확도 향상을 위한 적대적 오토인코더 기반 전처리 알고리즘" 제어·로봇·시스템학회 28 (28): 999-1005, 2022

      3 이영준 ; 임유진 ; 여태경 ; 이세진 ; 정종대 ; 박대길 ; 한종부, "다중빔음향측심기 계측모델을 활용한 실시간 해저지형도 작성 모의시험" 제어·로봇·시스템학회 28 (28): 436-443, 2022

      4 S. Zhang, "Underwater image enhancement via extended multi-scale Retinex" 245 : 1-9, 2017

      5 J. Y. Chiang, "Underwater image enhancement by wavelength compensation and dehazing" 21 (21): 1756-1769, 2011

      6 M. M. M. Manhães, "UUV simulator : a gazebo-based package for underwater intervention and multi-robot simulation" 1-8, 2016

      7 G. Taraldsen, "The underwater GPS problem" 1-8, 2011

      8 A. Boeing, "SubSim: an autonomous underwater vehicle simulation package" 33-38, 2006

      9 A. Rajput, "Steering Control and Kalman Filter Position Estimation Comparison for an Autonomous Underwater Vehicle" University of Illinois 2021

      10 J. J. Leonard, "Springer Handbook of Ocean Engineering" Springer 341-358, 2016

      1 손홍철 ; 문채주 ; 김동섭, "전력선 용량증대를 위한 해저케이블 설계" 한국전자통신학회 17 (17): 77-84, 2022

      2 김선영 ; 강창호, "영상 식별 및 항법 정확도 향상을 위한 적대적 오토인코더 기반 전처리 알고리즘" 제어·로봇·시스템학회 28 (28): 999-1005, 2022

      3 이영준 ; 임유진 ; 여태경 ; 이세진 ; 정종대 ; 박대길 ; 한종부, "다중빔음향측심기 계측모델을 활용한 실시간 해저지형도 작성 모의시험" 제어·로봇·시스템학회 28 (28): 436-443, 2022

      4 S. Zhang, "Underwater image enhancement via extended multi-scale Retinex" 245 : 1-9, 2017

      5 J. Y. Chiang, "Underwater image enhancement by wavelength compensation and dehazing" 21 (21): 1756-1769, 2011

      6 M. M. M. Manhães, "UUV simulator : a gazebo-based package for underwater intervention and multi-robot simulation" 1-8, 2016

      7 G. Taraldsen, "The underwater GPS problem" 1-8, 2011

      8 A. Boeing, "SubSim: an autonomous underwater vehicle simulation package" 33-38, 2006

      9 A. Rajput, "Steering Control and Kalman Filter Position Estimation Comparison for an Autonomous Underwater Vehicle" University of Illinois 2021

      10 J. J. Leonard, "Springer Handbook of Ocean Engineering" Springer 341-358, 2016

      11 P. D. de Cerqueira Gava, "Simu2VITA: a general purpose underwater vehicle simulator" 22 (22): 3255-, 2022

      12 D. Eleftherakis, "Sensors to increase the security of underwater communication cables: a review of underwater monitoring sensors" 20 (20): 737-, 2020

      13 R. W. Hascaryo, "Reduced order extended kalman filter incorporating dynamics of an Autonomous Underwater Vehicle for Motion Prediction" University of Illinois 2019

      14 P. Katara, "Open source simulator for unmanned underwater vehicles using ROS and Unity3D" 1-7, 2019

      15 S. Balasubramanian, "Neural Network Modeling of the Dynamics of Autonomous Underwater Vehicles for Kalman Filtering and Improved Localization" University of Illinois 2020

      16 E. Potokar, "HoloOcean : an underwater robotics simulator" 3040-3046, 2022

      17 S. Saat, "Hectorslam 2d mapping for simultaneous localization and mapping (SLAM)" 1529 (1529): 042032-, 2020

      18 김학준 ; 강수민 ; 김동한, "Gazebo 시뮬레이터를 활용한 고층 건물에서의 이동 로봇 실내 자율주행 알고리즘 개발" 제어·로봇·시스템학회 28 (28): 758-767, 2022

      19 M. M. Zhang, "Dave aquatic virtual environment : toward a general underwater robotics simulator" 1-8, 2022

      20 S. Balasubramanian, "Comparison of dynamic and kinematic model driven extended Kalman filters (EKF) for the localization of autonomous underwater vehicles"

      21 정원영 ; 김선영 ; 박찬국 ; 강창호, "CNN 영상 회귀 기반의 산란계수 추정을 통한 연무제거" 제어·로봇·시스템학회 27 (27): 890-896, 2021

      22 M. Prats, "An open source tool for simulation and supervision of underwater intervention missions" 2577-2582, 2012

      23 H. S. Kim, "A study on underwater simulated based sensor data collection for underwater navigation" 107-108, 2022

      24 M. Han, "A review on intelligence dehazing and color restoration for underwater images" 50 (50): 1820-1832, 2018

      25 F. C. Vaz, "A localization approach for autonomous underwater vehicles: a ROS-Gazebo framework"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼