1 Cunningham JT, "mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex" 450 : 736-740, 2007
2 Langfelder P, "WGCNA : an R package for weighted correlation network analysis" 9 : 559-, 2008
3 Altman MC, "Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children" 20 : 637-651, 2019
4 Tsitsiou E, "Transcriptome analysis shows activation of circulating CD8+T cells in patients with severe asthma" 129 : 95-103, 2012
5 Persson H, "Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles" 136 : 638-648, 2015
6 Baines KJ, "Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples" 127 : 153-160, 2011
7 Chelly J, "Transcription of the dystrophin gene in human muscle and non-muscle tissue" 333 : 858-860, 1988
8 Marbach D, "Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases" 13 : 366-370, 2016
9 Liew CC, "The peripheral blood transcriptome dynamically reflects system wide biology : a potential diagnostic tool" 147 : 126-132, 2006
10 Tamayo P, "The limitations of simple gene set enrichment analysis assuming gene independence" 25 : 472-487, 2016
1 Cunningham JT, "mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex" 450 : 736-740, 2007
2 Langfelder P, "WGCNA : an R package for weighted correlation network analysis" 9 : 559-, 2008
3 Altman MC, "Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children" 20 : 637-651, 2019
4 Tsitsiou E, "Transcriptome analysis shows activation of circulating CD8+T cells in patients with severe asthma" 129 : 95-103, 2012
5 Persson H, "Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles" 136 : 638-648, 2015
6 Baines KJ, "Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples" 127 : 153-160, 2011
7 Chelly J, "Transcription of the dystrophin gene in human muscle and non-muscle tissue" 333 : 858-860, 1988
8 Marbach D, "Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases" 13 : 366-370, 2016
9 Liew CC, "The peripheral blood transcriptome dynamically reflects system wide biology : a potential diagnostic tool" 147 : 126-132, 2006
10 Tamayo P, "The limitations of simple gene set enrichment analysis assuming gene independence" 25 : 472-487, 2016
11 Oh S, "The analytical landscape of static and temporal dynamics in transcriptome data" 5 : 35-, 2014
12 Bar-Joseph Z, "Studying and modelling dynamic biological processes using time-series gene expression data" 13 : 552-564, 2012
13 Sridhar S, "Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium" 9 : 259-, 2008
14 황병진, "Single-cell RNA sequencing technologies and bioinformatics pipelines" 생화학분자생물학회 50 : 1-14, 2018
15 Caramori G, "Role of transcription factors in the pathogenesis of asthma and COPD" 20 : 21-40, 2013
16 Roy S, "Reconstruction of gene co-expression network from microarray data using local expression patterns" 15 (15): S10-, 2014
17 Moher D, "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement" 8 : 336-341, 2010
18 Sawada R, "Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures" 8 : 156-, 2018
19 Qiu W, "Pharmacogenomics : novel loci identification via integrating gene differential analysis and eQTL analysis" 23 : 5017-5024, 2014
20 Bjornsdottir US, "Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood" 6 : e21902-, 2011
21 Hekking PP, "Pathway discovery using transcriptomic profiles in adult-onset severe asthma" 141 : 1280-1290, 2018
22 Glass K, "Passing messages between biological networks to refine predicted interactions" 8 : e64832-, 2013
23 Nueda MJ, "Next maSigPro : updating maSigPro bioconductor package for RNA-seq time series" 30 : 2598-2602, 2014
24 Zhou G, "NetworkAnalyst 3. 0 : a visual analytics platform for comprehensive gene expression profiling and meta-analysis" 47 : W234-W241, 2019
25 Sonawane AR, "Network medicine in the age of biomedical big data" 10 : 294-, 2019
26 Wang Z, "Mining data and metadata from the gene expression omnibus" 11 : 103-110, 2019
27 Brazma A, "Minimum information about a microarray experiment(MIAME)-toward standards for microarray data" 29 : 365-371, 2001
28 Sweeney TE, "Methods to increase reproducibility in differential gene expression via meta-analysis" 45 : e1-, 2017
29 Kontou PI, "Methods of analysis and meta-analysis for identifying differentially expressed genes" 1793 : 183-210, 2018
30 Tsai YH, "Meta-analysis of airway epithelium gene expression in asthma" 51 : 1701962-, 2018
31 Waldron L, "Meta-analysis in gene expression studies" 1418 : 161-176, 2016
32 Serin EA, "Learning from co-expression networks : possibilities and challenges" 7 : 444-, 2016
33 Lee JH, "Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types" 25 : 474-485, 2001
34 Kan M, "Integration of transcriptomic data identifies global and cell-specific asthma-related gene expression signatures" 2018 : 1338-1347, 2018
35 Nicholas B, "Induced sputum : a window to lung pathology" 37 : 868-872, 2009
36 Moffatt MF, "Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma" 448 : 470-473, 2007
37 Yeh YL, "Genetic profiles of transcriptomic clusters of childhood asthma determine specific severe subtype" 48 : 1164-1172, 2018
38 Subramanian A, "Gene set enrichment analysis : a knowledge-based approach for interpreting genome-wide expression profiles" 102 : 15545-15550, 2005
39 Yick CY, "Gene expression profiling of laser microdissected airway smooth muscle tissue in asthma and atopy" 69 : 1233-1240, 2014
40 Croteau-Chonka DC, "Gene expression profiling in blood provides reproducible molecular insights into asthma control" 195 : 179-188, 2017
41 Woodruff PG, "Gene expression in asthmatic airway smooth muscle" 5 : 113-118, 2008
42 Modena BD, "Gene expression correlated with severe asthma characteristics reveals heterogeneous mechanisms of severe disease" 195 : 1449-1463, 2017
43 Park HW, "Gene expression changes in lymphoblastoid cell lines and primary B cells by dexamethasone" 29 : 58-64, 2019
44 van Dam S, "Gene co-expression analysis for functional classification and gene-disease predictions" 19 : 575-592, 2018
45 Edgar R, "Gene Expression Omnibus : NCBI gene expression and hybridization array data repository" 30 : 207-210, 2002
46 Sharov AA, "ExAtlas : an interactive online tool for meta-analysis of gene expression data" 13 : 1550019-, 2015
47 Schlauch D, "Estimating gene regulatory networks with pandaR" 33 : 2232-2234, 2017
48 Mootha VK, "Errα and Gabpa/b specify PGC-1αdependent oxidative phosphorylation gene expression that is altered in diabetic muscle" 101 : 6570-6575, 2004
49 Leng N, "EBSeq-HMM : a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments" 31 : 2614-2622, 2015
50 Poole A, "Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease" 133 : 670-678.e12, 2014
51 Rau A, "Differential meta-analysis of RNA-seq data from multiple studies" 15 : 91-, 2014
52 Qiu W, "Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma" 141 : 1250-1258, 2018
53 김병근, "Different Biological Pathways Are Up-regulated in the Elderly With Asthma: Sputum Transcriptomic Analysis" 대한천식알레르기학회 11 (11): 104-115, 2019
54 Aldrich J, "Correlations genuine and spurious in Pearson and Yule" 10 : 364-376, 1995
55 Reverter A, "Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks" 24 : 2491-2497, 2008
56 Más P, "Circadian clock function in Arabidopsis thaliana : time beyond transcription" 18 : 273-281, 2008
57 Ikeo K, "CIBEX : center for information biology gene expression database" 326 : 1079-1082, 2003
58 Kulkarni A, "Beyond bulk : a review of single cell transcriptomics methodologies and applications" 58 : 129-136, 2019
59 Conlon EM, "Bayesian models for pooling microarray studies with multiple sources of replications" 7 : 247-, 2006
60 Weathington N, "BAL cell gene expression in severe asthma reveals mechanisms of severe disease and influences of medications" 200 : 837-856, 2019
61 Diao G, "Assessing genome-wide statistical significance for large p small n problems" 194 : 781-783, 2013
62 Brazma A, "ArrayExpress--a public repository for microarray gene expression data at the EBI" 31 : 68-71, 2003
63 Kelly RS, "An integrative transcriptomic and metabolomic study of lung function in children with asthma" 154 : 335-348, 2018
64 Aryee MJ, "An improved empirical bayes approach to estimating differential gene expression in microarray time-course data : BETR(Bayesian Estimation of Temporal Regulation)" 10 : 409-, 2009
65 Kan M, "Airway smooth muscle-specific transcriptomic signatures of glucocorticoid exposure" 61 : 110-120, 2019
66 Peters MC, "A transcriptomic method to determine airway immune dysfunction in T2-high and T2-low asthma" 199 : 465-477, 2019
67 Bigler J, "A severe asthma disease signature from gene expression profiling of peripheral blood from U-BIOPRED cohorts" 195 : 1311-1320, 2017
68 Pandey G, "A nasal brush-based classifier of asthma identified by machine learning analysis of nasal RNA sequence data" 8 : 8826-, 2018
69 Vieira Braga FA, "A cellular census of human lungs identifies novel cell states in health and in asthma" 25 : 1153-1163, 2019