RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      DM 검정을 이용한 냉동 고등어 소매가격 예측력 비교 분석 = A Comparative Analysis on the Forecasting Power among Frozen Mackerel Retail Price Determination Models Using DM test

      한글로보기

      https://www.riss.kr/link?id=A102141596

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Forecasting plays a key role in fishing management policies. The purpose of this study is to select which model is superior to forecast frozen mackerel retail prices using statistical approaches, It also aims to provide policy implications for the frozen retail mackerel price determination model. It especially focuses on the superior forecasting power within the seafood market. This study uses daily frozen mackerel prices of the retail market from 2006 to 2015. ARMA(4,3), ARMA(2,1)-GARCH(1,1), and VAR models with t-2 lag are selected to forecast frozen retail mackerel prices. In addition, the forecasting accuracies of each model are tested using Diebold & Mariano test (1995). It compares the predicted prices and actual prices using 1 year out-of-sample data. The results of this study are as follows. First, the ARMA(2,1)-GARCH(1,1) model shows the most superior accuracy based on MSE and MAE standard. Secondly, in terms of forecasting accuracy, the VAR model is equal to the superior ARMA(2,1)-GARCH(1,1) model only when using MSE standard based on the DM test. The ARMA(2.1)-GARCH(1,1) is the superior model since there is no model that shows identical forecasting accuracy to the MAE standard based on DM test. The outputs of this study are expected to increase consumers` economic utilization, and operate a predictable business to retailers by providing the frozen mackerel retail price future index. Furthermore, the outputs will provide useful information regarding Korean purchase, and also help set projects necessary to stabilize Korea seafood market prices.
      번역하기

      Forecasting plays a key role in fishing management policies. The purpose of this study is to select which model is superior to forecast frozen mackerel retail prices using statistical approaches, It also aims to provide policy implications for the fro...

      Forecasting plays a key role in fishing management policies. The purpose of this study is to select which model is superior to forecast frozen mackerel retail prices using statistical approaches, It also aims to provide policy implications for the frozen retail mackerel price determination model. It especially focuses on the superior forecasting power within the seafood market. This study uses daily frozen mackerel prices of the retail market from 2006 to 2015. ARMA(4,3), ARMA(2,1)-GARCH(1,1), and VAR models with t-2 lag are selected to forecast frozen retail mackerel prices. In addition, the forecasting accuracies of each model are tested using Diebold & Mariano test (1995). It compares the predicted prices and actual prices using 1 year out-of-sample data. The results of this study are as follows. First, the ARMA(2,1)-GARCH(1,1) model shows the most superior accuracy based on MSE and MAE standard. Secondly, in terms of forecasting accuracy, the VAR model is equal to the superior ARMA(2,1)-GARCH(1,1) model only when using MSE standard based on the DM test. The ARMA(2.1)-GARCH(1,1) is the superior model since there is no model that shows identical forecasting accuracy to the MAE standard based on DM test. The outputs of this study are expected to increase consumers` economic utilization, and operate a predictable business to retailers by providing the frozen mackerel retail price future index. Furthermore, the outputs will provide useful information regarding Korean purchase, and also help set projects necessary to stabilize Korea seafood market prices.

      더보기

      참고문헌 (Reference)

      1 한국해양수산개발원 수산업관측센터, "해외수산정보 21호" 15-, 2015

      2 김배성, "채소가격 예측을 위한 응용기법별 예측력 비교" 한국농업경제학회 46 (46): 89-113, 2005

      3 남종오, "시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구" 한국해양과학기술원 34 (34): 185-195, 2012

      4 남종오, "시계열 분석을 이용한 굴 가격 예측에 관한 연구" 한국해양수산개발원 27 (27): 65-94, 2012

      5 김남호, "굴 소매가격 예측 모형의 DM 검정 및 변동성 분석" 부경대학교 2016

      6 Chris, B., "The ICMA Centre, University of Reading" Cambridge University Press 647-, 2008

      7 Kwiatkowski, D., "Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: How sure are We that Economic Time Series have a Unit Root?" 54 (54): 159-178, 1992

      8 Phillips, P.C.B., "Testing for a Unit Root in Time Series Regression" 75 (75): 335-346, 1988

      9 Guttormsen, A.G., "Forecasting Weekly Salmon Prices: Risk Management in Fish Farming" 3 (3): 159-166, 1999

      10 Floros, C., "Forecasting Monthly Fisheries Prices: Model Comparison using Data from Cornwall (UK)" 14 (14): 613-624, 2006

      1 한국해양수산개발원 수산업관측센터, "해외수산정보 21호" 15-, 2015

      2 김배성, "채소가격 예측을 위한 응용기법별 예측력 비교" 한국농업경제학회 46 (46): 89-113, 2005

      3 남종오, "시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구" 한국해양과학기술원 34 (34): 185-195, 2012

      4 남종오, "시계열 분석을 이용한 굴 가격 예측에 관한 연구" 한국해양수산개발원 27 (27): 65-94, 2012

      5 김남호, "굴 소매가격 예측 모형의 DM 검정 및 변동성 분석" 부경대학교 2016

      6 Chris, B., "The ICMA Centre, University of Reading" Cambridge University Press 647-, 2008

      7 Kwiatkowski, D., "Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: How sure are We that Economic Time Series have a Unit Root?" 54 (54): 159-178, 1992

      8 Phillips, P.C.B., "Testing for a Unit Root in Time Series Regression" 75 (75): 335-346, 1988

      9 Guttormsen, A.G., "Forecasting Weekly Salmon Prices: Risk Management in Fish Farming" 3 (3): 159-166, 1999

      10 Floros, C., "Forecasting Monthly Fisheries Prices: Model Comparison using Data from Cornwall (UK)" 14 (14): 613-624, 2006

      11 Gujarati, D., "Econometrics by Example" Palgrave Macmillan 371-, 2011

      12 IHS Global Inc, "EViews 9 User's Guide Ⅱ" 1099-, 2015

      13 Dickey, D.A., "Distribution of the Estimators for Autoregressive Time Series with a Unit Root" 74 : 427-431, 1979

      14 Diebold, F.X., "Comparing Predictive Accuracy" 13 : 253-265, 1995

      15 전상곤, "ARIMA 모형을 이용한 한육우 사육두수 추정" 농업생명과학연구원 45 (45): 115-126, 2011

      16 Michael, P.C., "A Companion to Economic Forecasting" Blackwell Publishing Ltd 354-, 2004

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.42 0.42 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.44 0.43 0.573 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼