RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

      한글로보기

      https://www.riss.kr/link?id=A108386154

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Fiber lasers have made remarkable progress over the past three decades, and they now serve farreaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether rel...

      Fiber lasers have made remarkable progress over the past three decades, and they now serve farreaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

      더보기

      참고문헌 (Reference) 논문관계도

      1 P. Pringsheim, "Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung" 57 : 739-746, 1929

      2 M. Cavillon, "Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities" 8 : 744-760, 2018

      3 J. V. Guiheen, "Yb3+ and Tm3+-doped fluoroaluminate glasses for anti-Stokes cooling" 47 : 167-176, 2006

      4 M. Saha, "Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications" 28 : 1022-1025, 2016

      5 B. G. Wybourne, "Wybourne, Spectroscopic Properties of Rare Earths" John Wiley & Sons 1965

      6 T. Könning, "Wavelength stabilized fiber coupled modules at 79x nm, 88x nm, and 97x nm with up to 600W output power based on single emitters" 11668 : 116680F-, 2021

      7 B. L. Volodin, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings" 29 : 1891-1893, 2004

      8 C. Jauregui, "Transverse mode instability" 12 : 429-484, 2020

      9 A. A. Stolov, "Thermal stability of specialty optical fibers" 26 : 3443-3451, 2008

      10 L. Dong, "Thermal lensing in optical fibers" 24 : 19841-19852, 2016

      1 P. Pringsheim, "Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung" 57 : 739-746, 1929

      2 M. Cavillon, "Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities" 8 : 744-760, 2018

      3 J. V. Guiheen, "Yb3+ and Tm3+-doped fluoroaluminate glasses for anti-Stokes cooling" 47 : 167-176, 2006

      4 M. Saha, "Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications" 28 : 1022-1025, 2016

      5 B. G. Wybourne, "Wybourne, Spectroscopic Properties of Rare Earths" John Wiley & Sons 1965

      6 T. Könning, "Wavelength stabilized fiber coupled modules at 79x nm, 88x nm, and 97x nm with up to 600W output power based on single emitters" 11668 : 116680F-, 2021

      7 B. L. Volodin, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings" 29 : 1891-1893, 2004

      8 C. Jauregui, "Transverse mode instability" 12 : 429-484, 2020

      9 A. A. Stolov, "Thermal stability of specialty optical fibers" 26 : 3443-3451, 2008

      10 L. Dong, "Thermal lensing in optical fibers" 24 : 19841-19852, 2016

      11 Y. Fan, "Thermal effects in kilowatt all-fiber MOPA" 19 : 15162-15172, 2011

      12 M. -A. Lapointe, "Thermal effects in high-power CW fiber lasers" 7195 : 71951U-, 2009

      13 M. K. Davis, "Thermal effects in doped fibers" 16 : 1013-1023, 1998

      14 S. Naderi, "Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers" 8964 : 89641W-, 2014

      15 G. H. Dieke, "The spectra of the doubly and triply ionized rare earths" 2 : 675-686, 1963

      16 T. C. Newell, "Temperature effects on the emission properties of Yb-doped optical fibers" 273 : 256-259, 2007

      17 A. Mafi, "Temperature distribution inside a double-cladding optical fiber laser or amplifier" 37 : 1821-1828, 2020

      18 Y. Cheng, "Temperature dependence of the spectral properties of Yb3+/P5+/Al3+ co-doped silica fiber core glasses" 11 : 2459-2467, 2021

      19 A. Malinowski, "Sub-microsecond pulsed pumping as a means of suppressing amplified spontaneous emission in tandem pumped fiber amplifiers" 51 : 6800307-, 2015

      20 D. J. DiGiovanni, "Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join" 113 : 58-64, 1989

      21 L. J. Mawst, "Strained-layer quantum well materials grown by MOCVD for diode laser application" 75 : 100303-, 2021

      22 H. Steinkemper, "Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals" 15 : 053033-, 2013

      23 K. Lu, "Spectroscopic properties of Ybdoped silica glass" 91 : 576-581, 2002

      24 Q. Shi, "Spectroscopic properties of Nd3+-doped phosphate laser glasses" 26 : 359-364, 2005

      25 S. D. Melgaard, "Solid-state optical refrigeration to sub-100 Kelvin regime" 6 : 20380-, 2016

      26 G. Skolianos, "Slow light in fiber Bragg gratings and its applications" 49 : 463001-, 2016

      27 M. Steinke, "Single-frequency fiber amplifiers for next-generation gravitational wave detectors" 24 : 3100613-, 2018

      28 C. Shi, "Simulation investigation of impact factors in photodarkening-induced beam degradation in fiber amplifiers" 27 : 105102-, 2017

      29 Changgeng Ye, "Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers" 20 : 188-199, 2014

      30 H. Song, "SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG" 29 : 20535-20544, 2021

      31 S. Jetschke, "Role of Ce in Yb/Al laser fibers : prevention of photodarkening and thermal effects" 24 : 13009-13022, 2016

      32 P. Zhou, "Review on recent progress on mid-infrared fiber lasers" 22 : 1744-1751, 2012

      33 S. Fu, "Review of recent progress on single-frequency fiber lasers" 34 : A49-A62, 2017

      34 K. Tankala, "Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers" 50 : 111607-, 2011

      35 N. Yu, "Reduced quantum defect in a Yb-doped fiber laser by balanced dual-wavelength excitation" 119 : 141105-, 2021

      36 X. Bao, "Recent progress in distributed fiber optic sensors" 12 : 8601-8639, 2012

      37 P. Zhou, "Recent development on high-power tandem-pumped fiber laser" 10016 : 100160M-, 2016

      38 Z. Lou, "Realization of in situ fiber-core temperature measurement in a kilowatt-level fiber laser oscillator : Design and optimization of the method based on OFDR" 39 : 2573-2582, 2021

      39 Z. Lou, "Real-time in-situ distributed fiber core temperature measurement in hundred-watt fiber laser oscillator pumped by 915/976 nm LD sources" 10 : 9006-, 2020

      40 E. Li, "Rayleigh scattering based distributed optical fiber sensing" 10464 : 104641K-, 2017

      41 J. Knall, "Radiation-balanced silica fiber laser" 8 : 830-833, 2021

      42 J. M. Knall, "Radiation-balanced silica fiber amplifier" 127 : 013903-, 2021

      43 Z. Yang, "Radiation-balanced Yb : YAG disk laser" 27 : 1392-1400, 2019

      44 F. Auzel, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3" 24 : 103-109, 2003

      45 H. Li, "Pump wavelength dependence of photodarkening in Yb-doped fibers" 35 : 2535-2540, 2017

      46 N. Yu, "Probing the quantum conversion efficiency in Yb-doped optical fibers with Brillouin scattering" 11702 : 117020B-, 2021

      47 H. Wu, "Preliminary theoretical analysis of high-power Yb-doped fiber amplifiers tandem-pumped by short-wavelength fiber lasers" 11781 : 1178120-, 2021

      48 J. Zhu, "Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers" 19 : 18645-18654, 2011

      49 S. S. Aleshkina, "Photodarkening-free Yb-doped saddleshaped fiber for high power single-mode 976-nm laser" 30 : 127-130, 2018

      50 T. Okazaki, "P concentration dependence of local structure around Yb3+ ions and optical properties in Yb–P-doped silica glasses" 58 : 062001-, 2019

      51 A. Malinowski, "Overlapped pulsed pumping of tandem pumped fiber amplifiers to increase achievable pulse energy" 53 : 1600108-, 2017

      52 A. S. Kurkov, "Oscillation spectral range of Yb-doped fiber lasers" 4 : 93-102, 2007

      53 B. Zintzen, "Optimization of the heat transfer in multi-kW-fiber-lasers" 6873 : 687319-, 2008

      54 G. Nemova, "Optimization of the dimensions of an Yb3+ : ZBLANP optical fiber sample for laser cooling of solids" 33 : 2218-2220, 2008

      55 S. D. Melgaard, "Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature" 38 : 1588-1590, 2013

      56 S. Rostami, "Optical refrigeration of Tm : YLF and Ho : YLF crystals" 9765 : 97650P-, 2016

      57 M. Sheik-Bahae, "Optical refrigeration" 1 : 693-699, 2007

      58 M. M. Bubnov, "Optical properties of fibres with aluminophosphosilicate glass cores" 39 : 857-862, 2009

      59 A. J. Boyland, "Optical fiber fabrication using novel gas-phase deposition technique" 29 : 912-915, 2011

      60 N. J. Condon, "Optical cooling in Er3+ : KPb2Cl5" 17 : 5466-5472, 2009

      61 P. C. Schultz, "Optical absorption of the transition elements in vitreous silica" 57 : 309-313, 1974

      62 S. Hufner, "Optical Spectra of Transparent Rare Earth Compounds" Elsevier 1978

      63 X. Peng, "Optical Amplifiers and Their Applications" Optica Publishing Group 2005

      64 H. Zellmer, "Optical Amplifiers and Their Applications" Optica Publishing Group 1997

      65 Z. Zhou, "Online temperature measurement of fiber Bragg gratings inside a fiber laser" 45 : 137-140, 2018

      66 N. Yu, "On the use of Brillouin scattering to evaluate quantum conversion efficiency in Yb-doped optical fibers" 39 : 4158-4165, 2021

      67 M. Engholm, "On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration" 11 : 115-126, 2021

      68 J. M. F. van Dijk, "On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4 f–4 f transitions in rare-earth ions" 78 : 5317-5323, 1983

      69 J. Ballato, "On the clustering of rare earth dopants in fiber lasers" 6 : 175-181, 2017

      70 R. I. Epstein, "Observation of laser-induced fluorescent cooling of a solid" 377 : 500-503, 1995

      71 C. W. Hoyt, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass" 85 : 3600-3603, 2000

      72 A. Langner, "New developments in high power fiber lasers based on alternative materials" 7914 : 79141U-, 2011

      73 C. B. Layne, "Multiphonon relaxation of rare-earth ions in oxide glasses" 16 : 10-, 1977

      74 M. P. Hehlen, "Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN" 75 : 144302-, 2007

      75 J. M. Knall, "Model of anti-Stokes fluorescence cooling in a single-mode optical fiber" 36 : 4752-4760, 2018

      76 A. V. Smith, "Mode instability in high power fiber amplifiers" 19 : 10180-10192, 2011

      77 S. R. Bowman, "Minimizing heat generation in solid-state lasers" 46 : 1076-1085, 2010

      78 K. Tang, "Millikelvin-resolved ambient thermography" 6 : eabd8688-, 2020

      79 X. Tang, "Method for estimating the Stark splitting of rare-earth ions from the measured cross-section spectra" 57 : 8573-8577, 2018

      80 J. M. O. Daniel, "Metal clad active fibres for power scaling and thermal management at kW power levels" 24 : 18592-18606, 2016

      81 L. Huang, "Mechanical properties of polyimide coated optical fibers at elevated temperatures" 9702 : 97020Y-, 2016

      82 V. Goloborodko, "Measuring temperature profiles in high-power optical fiber components" 42 : 2284-2288, 2003

      83 R. I. Epstein, "Measurements of optical refrigeration in ytterbium-doped crystals" 90 : 4815-4819, 2001

      84 P. D. Dragic, "Materials for optical fiber lasers : a review" 5 : 041301-, 2018

      85 M. P. Hehlen, "Materials for optical cryocoolers" 1 : 7471-7478, 2013

      86 J. Ballato, "Materials for TMI mitigation" 11665 : 1166520-, 2021

      87 B. Gouhier, "Low-noise single-frequency 50 W fiber laser operating at 1013 nm" 16 : 045103-, 2019

      88 R. Paschotta, "Lifetime quenching in Yb-doped fibres" 136 : 375-378, 1997

      89 N. Yu, "Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber" 43 : 3096-3099, 2018

      90 M. A. Mel’kumov, "Lasing parameters of ytterbiumdoped fibres doped with P2O5 and Al2O3" 34 : 843-848, 2004

      91 V. Gapontsev, "Lasers, Sources and Related Photonic Devices" Optica Publishing Group 2010

      92 S. R. Bowman, "Lasers without internal heat generation" 35 : 115-122, 1999

      93 E. S. de L. Filho, "Laser-induced cooling of a Yb : YAG crystal in air at atmospheric pressure" 21 : 24711-24720, 2013

      94 J. D. Minelly, "Laser-diode pumped neodymium-doped fibre laser with output power >1 W" Optica Publishing Group 1992

      95 D. V. Seletskiy, "Laser cooling of solids to cryogenic temperatures" 4 : 161-164, 2010

      96 A. Rayner, "Laser cooling of a solid from ambient temperature" 48 : 103-114, 2001

      97 T. R. Gosnell, "Laser cooling of a solid by 65 K starting from room temperature" 24 : 1041-1043, 1999

      98 X. Luo, "Laser cooling of a solid by 21 K starting from room temperature" 23 : 639-641, 1998

      99 D. V. Seletskiy, "Laser cooling in solids : advances and prospects" 79 : 096401-, 2016

      100 J. Knall, "Laser cooling in a silica optical fiber at atmospheric pressure" 45 : 1092-1095, 2020

      101 G. Nemova, "Laser Cooling: Fundamental Properties and Applications" Pan Stanford Pub. Pte. Ltd. 2017

      102 E. A. Quadrelli, "Lanthanide contraction over the 4f series follows a quadratic decay" 41 : 167-169, 2002

      103 T. W. Hawkins, "Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber" 38 : F38-F49, 2021

      104 J. S. Park, "Investigation of photodarkening in tandem-pumped Yb-doped fibers" 28 : 27316-27323, 2020

      105 Z. Xie, "Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser" 10083 : 1008327-, 2017

      106 P. Barua, "Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass" 354 : 4760-4764, 2008

      107 L. Zhang, "Influence of Stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses" 23 : 1505-1511, 2015

      108 X. Tian, "Influence of Bragg reflection of chirped tilted fiber Bragg grating on Raman suppression in high-power tandem pumping fiber amplifiers" 28 : 19508-19517, 2020

      109 Y. Jeong, "In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis" 45 : 153-154, 2009

      110 A. A. Jasim, "Impact of shaping optical fiber preforms based on grinding and a CO2 laser on the inner-cladding losses of shaped double-clad fibers" 28 : 13601-13615, 2020

      111 V. Gapontsev, "Highly-efficient high-power pumps for fiber lasers" 10086 : 1008604-, 2017

      112 S. Suzuki, "Highly ytterbium-doped silica fibers with low photo-darkening" 17 : 9924-9932, 2009

      113 G. Gu, "Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm" 23 : 17693-17700, 2015

      114 A. Arora, "High-resolution temperature and acoustic pressure sensors utilizing slow-light fiber Bragg gratings" Stanford University 2019

      115 A. Arora, "High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection" 43 : 3337-3340, 2018

      116 D. Stachowiak, "High-power passive fiber components for all-fiber lasers and amplifiers application—design and fabrication" 5 : 38-, 2018

      117 C. Jauregui, "High-power fibre lasers" 7 : 861-867, 2013

      118 G. Nemova, "High-power fiber lasers with integrated rare-earth optical cooler" 7614 : 761406-, 2010

      119 P. Zhou, "High-power fiber lasers based on tandem pumping" 34 : A29-A36, 2017

      120 F. Gonthier, "High-power All-Fiber components : the missing link for high-power fiber lasers" 5335 : 266-276, 2004

      121 H. Xiao, "High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump" 54 : 8166-8169, 2015

      122 N. Platonov, "High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000–1030 nm spectral range" 11260 : 1126003-, 2020

      123 R. K. Huang, "High-brightness wavelength beam combined semiconductor laser diode arrays" 19 : 209-211, 2007

      124 M. N. Zervas, "High power ytterbium-doped fiber lasers—Fundamentals and applications" 28 : 1442009-, 2014

      125 H. Po, "High power neodymium-doped single transverse mode fibre laser" 29 : 1500-1501, 1993

      126 D. J. Richardson, "High power fiber lasers : current status and future perspectives" 27 : B63-B92, 2010

      127 M. N. Zervas, "High power fiber lasers : a review" 20 : 219-241, 2014

      128 A. Galvanauskas, "High power fiber lasers" 15 : 42-47, 2004

      129 P. Even, "High power double clad fiber lasers : a review" 4638 : 1-12, 2002

      130 IPG Photonics, "High power CW fiber lasers"

      131 M. Kanskar, "High brightness diodes and 600 W 62% efficient low SWaP fibercoupled package" 11262 : 112620A-, 2020

      132 S. K. Kalyoncu, "High brightness 1018 nm monolithic fiber laser with power scaling to >500 W" 59 : 4763-4767, 2020

      133 K. -J. Lim, "High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers" 8 : 1599-1604, 2020

      134 R. Reisfeld, "Handbook on the Physics and Chemistry of Rare Earths Vol. 9" Elsevier 1-90, 1987

      135 M. P. Hehlen, "Handbook on the Physics and Chemistry of Rare Earths Vol. 45" Elsevier 179-260, 2014

      136 C. Li, "Frequency noise of high-gain phosphate fiber single-frequency laser" 23 : 045107-, 2013

      137 H. Zimer, "Fibers and fiber-optic components for high-power fiber lasers" 7914 : 791414-, 2011

      138 R. Kashyap, "Fiber Bragg Gratings" Academic Press 2009

      139 M. Ackermann, "Extraction of more than 10 kW from a single ytterbium-doped MM-fiber" 10897 : 1089717-, 2019

      140 J. Dai, "Extraction of more than 10 kW from Yb-doped tandem-pumping aluminophosphosilicate fiber" 11780 : 117801D-, 2021

      141 Z. Wang, "Experimental research on high power tandem pumped fiber laser with homemade gain fiber" 11455 : 114556V-, 2020

      142 J. M. Knall, "Experimental observation of cooling in Yb-doped silica fibers" 11298 : 112980F-, 2020

      143 J. Knall, "Experimental comparison of silica fibers for laser cooling" 45 : 4020-4023, 2020

      144 A. L. Allred, "Electronegativity values from thermochemical data" 17 : 215-221, 1961

      145 X. Dong, "Efficient special S-band ytterbium fiber laser emitting at 1012 nm and its application in tandem pumping" 22 : 953-956, 2012

      146 Y. Fan, "Efficient heat transfer in high-power fiber lasers" 10 : 111401-, 2012

      147 S. Jetschke, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition" 16 : 15540-15545, 2008

      148 M. Wang, "Effective suppression of stimulated Raman scattering in half 10kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings" 7 : 167-171, 2019

      149 S. Liu, "Effect of thermal lens on beam quality and mode matching in LD pumped Er-Yb-codoped phosphate glass microchip laser" 41 : 035104-, 2008

      150 A. Rayner, "Distributed laser refrigeration" 40 : 5423-5429, 2001

      151 L. Huang, "Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125°C" 8 : 1501407-, 2016

      152 Z. Liu, "Development status of high power fiber lasers and their coherent beam combination" 62 : 41301-, 2019

      153 W. -J. Hwang, "Development of micro-heaters with optimized temperature compensation design for gas sensors" 11 : 2580-2591, 2011

      154 M. Khodasevich, "Determining the Stark structure of Yb3+ energy levels in Y3Al5O12 and CaF2 using principal component analysis of temperature dependences of fluorescence spectra" 187 : 295-297, 2017

      155 G. Lei, "Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses" 57 : 7673-7678, 1998

      156 A. M. Rocha, "Detection of fiber fuse effect using FBG sensors" 11 : 1390-1394, 2011

      157 J. M. Knall, "Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding" 39 : 2497-2504, 2021

      158 J. Knall, "Demonstration of anti-Stokes cooling in Yb-doped ZBLAN fibers at atmospheric pressure" 44 : 2338-2341, 2019

      159 M. Chen, "Demonstration of 50-W-level all-fiber oscillator operating near 980 nm with the 20-μm core-diameter double-cladding Yb-doped fiber" 65 : 102609-, 2021

      160 Y. Nageno, "Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses" 76 : 3081-3086, 1993

      161 J. Thiede, "Cooling to 208 K by optical refrigeration" 86 : 154107-, 2005

      162 M. Peysokhan, "Conference on Lasers and Electro-Optics" Optica Publishing Group 2021

      163 N. Yu, "Conference on Lasers and Electro-Optics" Optica Publishing Group 2018

      164 Y. Sun, "Compositional dependence of Stark splitting and spectroscopic properties in Yb3+-doped lead silicate glasses" 532 : 119890-, 2020

      165 M. Peysokhan, "Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers" 8 : 202-210, 2020

      166 C. Clavaguéra, "Calculated lanthanide contractions for molecular trihalides and fully hydrated ions : The contributions from relativity and 4f-shell hybridization" 429 : 8-12, 2006

      167 S. R. Bowman, "CLEO:2011 - Laser Applications to Photonic Applications" Optica Publishing Group 2011

      168 J. Koponen, "Benchmarking and measuring photodarkening in Yb doped fibers" 7195 : 71950R-, 2009

      169 J. Fernandez, "Anti-stokes laser cooling in bulk erbium-doped materials" 97 : 033001-, 2006

      170 W. Patterson, "Anti-Stokes luminescence cooling of Tm3+doped BaY2F8" 16 : 1704-1710, 2008

      171 A. Mendioroz, "Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal" 27 : 1525-1527, 2002

      172 G. Barnard, "Analytical model for rare-earth-doped fiber amplifiers and lasers" 30 : 1817-1830, 1994

      173 J. W. Dawson, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power" 16 : 13240-13266, 2008

      174 S. R. Nagel, "An overview of the modified chemical vapor deposition(MCVD)process and performance" 30 : 305-322, 1982

      175 T. Zhang, "An optimization of Raman effects in tandem-pumped Yb-doped kilowatt fiber amplifiers" 9524 : 95240Y-, 2015

      176 S. Matsubara, "Advanced Solid-State Photonics" Optica Publishing Group 2007

      177 L. Thévenaz, "Advanced Fiber Optics : Concept and Technology" EPFL press 2011

      178 C. R. Menyuk, "Accurate and efficient modeling of the transverse mode instability in high energy laser amplifiers" 29 : 17746-17757, 2021

      179 M. Cavillon, "A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map" 9 : 447-470, 2018

      180 P. D. Dragic, "A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients" 9 : 307-318, 2018

      181 S. Unger, "A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology" 24 : 035103-, 2014

      182 P. Dragic, "A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors" 8 : 1996-, 2018

      183 D. F. Welch, "A brief history of high-power semiconductor lasers" 6 : 1470-1477, 2000

      184 P. Yan, "A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes" 24 : 0902506-, 2018

      185 F. Roeser, "94W 980 nm high brightness Yb-doped fiber laser" 16 : 17310-17318, 2008

      186 F. Beier, "6.8 kW peak power quasicontinuous wave tandem-pumped Ytterbium amplifier at 1071 nm" 9344 : 93441H-, 2015

      187 Z. Wang, "5. 1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering" 57 : 6800109-, 2021

      188 S. Xu, "400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser" 36 : 3708-3710, 2011

      189 R. Paoletti, "350 W high-brightness multi-emitter semiconductor laser module emitting at 976 nm" 11668 : 1166805-, 2021

      190 R. Li, "2240 W high-brightness 1018 nm fiber laser for tandem pump application" 14 : 125102-, 2017

      191 F. Gibert, "2-μm double-pulse single-frequency Tm : fiber laser pumped Ho : YLF laser for a space-borne CO2 lidar" 57 : 10370-10379, 2018

      192 H. Yang, "126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier" 18 : 125801-, 2016

      193 S. S. Sané, "11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium" 20 : 8915-8919, 2012

      194 J. Dai, "10kW-level output power from a tandem-pumped Yb-doped aluminophosphosilicate fiber amplifier" 67 : 102738-, 2021

      195 J. Y. Dai, "10kW-level Yb-doped aluminophosphosilicate fiber" Optica Publishing Group 2020

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼