RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Fractal 나무의 개념을 기반으로 한 설마천 시험유역의 Fractal 차원 추정 = Estimation of fractal dimension for Seolma creek experimental basin on the basis of fractal tree concept

      한글로보기

      https://www.riss.kr/link?id=A107341918

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study presents a methodology to estimate two distinct fractal dimensions of natural river basin by using fractal tree concept. To this end, an analysis is performed on fractal features of a complete drainage network which consists of all possible drainage paths within a river basin based on the growth process of fractal tree. The growth process of fractal tree would occur only within the limited drainage paths possessing stream flow features in a river basin. In the case of small river basin, the bifurcation process of network is more sensitive to the growth step of fractal tree than the meandering process of stream segment, so that various bifurcation structures could be generated in a single network. Therefore, fractal dimension of network structure for small river basin should be estimated in the form of a range not a single figure. Furthermore, the network structures with fractal tree from this study might be more useful information than stream networks from a topographic or digital map for analysis of drainage structure on small river basin.
      번역하기

      This study presents a methodology to estimate two distinct fractal dimensions of natural river basin by using fractal tree concept. To this end, an analysis is performed on fractal features of a complete drainage network which consists of all possible...

      This study presents a methodology to estimate two distinct fractal dimensions of natural river basin by using fractal tree concept. To this end, an analysis is performed on fractal features of a complete drainage network which consists of all possible drainage paths within a river basin based on the growth process of fractal tree. The growth process of fractal tree would occur only within the limited drainage paths possessing stream flow features in a river basin. In the case of small river basin, the bifurcation process of network is more sensitive to the growth step of fractal tree than the meandering process of stream segment, so that various bifurcation structures could be generated in a single network. Therefore, fractal dimension of network structure for small river basin should be estimated in the form of a range not a single figure. Furthermore, the network structures with fractal tree from this study might be more useful information than stream networks from a topographic or digital map for analysis of drainage structure on small river basin.

      더보기

      참고문헌 (Reference)

      1 Hooshyar, M., "Wet channel network extraction by integrating LiDAR intensity and elevation data" 51 : 10029-10046, 2015

      2 Tarboton, D. G., "The fractal nature of river networks" 24 (24): 1317-1322, 1988

      3 O’Callaghan, J. F., "The extraction of drainage networks from digital elevation data" 28 : 324-344, 1984

      4 Tokunaga, E, "The composition of drainage network in Toyohira River basin and Horton’s first law" 15 : 1-19, 1966

      5 Mandelbrot, B. B., "The Fractal geometry of nature" W. H. Freeman 1982

      6 Tarboton, D. G., "Terrain analysis using digital elevation models in hydrology" 2003

      7 Hack, J. T., "Studies of longitudinal profiles in Virginia and Maryland" United States Geological Survey 45-97, 1957

      8 Shreve, R. L, "Statistical law of stream numbers" 74 : 17-37, 1966

      9 Hergarten, S., "Self-organized criticality in earth system" Springer-Verlag 2002

      10 Dodds, P. S., "Scaling, universality, and geomorphology" 28 : 571-610, 2000

      1 Hooshyar, M., "Wet channel network extraction by integrating LiDAR intensity and elevation data" 51 : 10029-10046, 2015

      2 Tarboton, D. G., "The fractal nature of river networks" 24 (24): 1317-1322, 1988

      3 O’Callaghan, J. F., "The extraction of drainage networks from digital elevation data" 28 : 324-344, 1984

      4 Tokunaga, E, "The composition of drainage network in Toyohira River basin and Horton’s first law" 15 : 1-19, 1966

      5 Mandelbrot, B. B., "The Fractal geometry of nature" W. H. Freeman 1982

      6 Tarboton, D. G., "Terrain analysis using digital elevation models in hydrology" 2003

      7 Hack, J. T., "Studies of longitudinal profiles in Virginia and Maryland" United States Geological Survey 45-97, 1957

      8 Shreve, R. L, "Statistical law of stream numbers" 74 : 17-37, 1966

      9 Hergarten, S., "Self-organized criticality in earth system" Springer-Verlag 2002

      10 Dodds, P. S., "Scaling, universality, and geomorphology" 28 : 571-610, 2000

      11 Ijjasz-Vasquez, E. J., "Scaling regimes of local slope versus contributing area in digital elevation models" 12 : 299-311, 1995

      12 Agnese, C., "Scaling properties of topologically random channel network" 187 : 183-193, 1996

      13 Maritan, A., "Scaling laws for river networks" 53 (53): 1510-1515, 1996

      14 Puente, C. E., "On the fractal structure of networks and dividers within a watershed" 187 : 173-181, 1996

      15 La Barbera, P., "On the fractal dimension of stream networks" 25 (25): 735-741, 1989

      16 Moussa, R, "On morphometric properties of basins, scale effects and hydrological response" 17 : 33-58, 2003

      17 Rigon, R., "On Hack’s law" 32 (32): 3367-3374, 1996

      18 Peckham, S. D, "New results for self-similar trees with applications to river networks" 31 (31): 1023-1029, 1995

      19 Yang, S., "New findings on river network organization: Law of eigenarea and relationships among Hortonian scaling ratios" 25 (25): 1750029-, 2017

      20 Beer, T., "Horton’s law and the Fractal nature of streams" 29 (29): 1475-1487, 1993

      21 김주철, "Hack의 법칙과 집수평면의 기하학적 특성" 한국수자원학회 42 (42): 691-702, 2009

      22 김주철, "Fractal 나무를 기반으로 한 배수구조의 기하학적 특성" 한국수자원학회 41 (41): 797-806, 2008

      23 Newman, W. I., "Fractal trees with side branching" 5 (5): 603-614, 1997

      24 Kim, J. C., "Fractal tree analysis of drainage patterns" 29 : 1217-1230, 2015

      25 Tarboton, D. G, "Fractal river networks, Horton’s laws and Tokunaga cyclicity" 187 : 105-117, 1996

      26 Rosso, R., "Fractal relation of mainstream length to catchment area in river networks" 27 (27): 381-387, 1991

      27 Moussa, R., "Fractal analyses of tree-like networks from digital elevation model data" 187 : 157-172, 1996

      28 Schumm, S. A, "Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey" 67 (67): 597-646, 1956

      29 Horton, R. E, "Erosional development of streams and their drainage basin: hydrophysical approach to quantitative morphology" 13 (13): 275-370, 1945

      30 Leopold, L. B., "Ephemeral streams-hydraulic factors and their relation to the drainage net" United States Geological Survey 1-42, 1956

      31 Godsey, S. E., "Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order" 28 : 5791-5803, 2014

      32 김주철, "DEM을 이용한 수로망의 형태학적 표현" 한국수자원학회 40 (40): 287-297, 2007

      33 Lee, G., "Comparative analysis of geomorphologic characteristics of DEM-based drainage networks" 16 (16): 137-147, 2011

      34 Smart, J. S, "Channel networks" 8 : 350-346, 1972

      35 Montgomery, D. R., "Channel network source representation using digital elevation models" 29 (29): 3925-3934, 1993

      36 Tarboton, D. G., "A physical basis for drainage density" 5 : 59-75, 1992

      37 Saunders, W. K., "A GIS assessment of nonpoint source pollution in the San Antonio-Nueces Coastal basin" Center for Research in Water Resources, University of Texas 1996

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.5 0.5 0.57
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.55 0.54 0.781 0.22
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼