RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      An Electrical Stimulator IC with Chopped Pulse based Active Charge Balancing for Neural Interface Applications

      한글로보기

      https://www.riss.kr/link?id=A107902246

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, a current-mode neural stimulator integrated circuit (IC) using novel active charge balancing technique is presented. The charge balancing technique proposed in this work is based on chopped pulse waveform, where the number of chopped pu...

      In this paper, a current-mode neural stimulator integrated circuit (IC) using novel active charge balancing technique is presented. The charge balancing technique proposed in this work is based on chopped pulse waveform, where the number of chopped pulses generated in the anodic phase is controlled accurately in order to limit the amount of residual potential at the electrode. In addition, a quick automatic electrode shorting process follows the active charge balancing phase to further discharge to a negligible residual voltage level in every stimulation cycle, ensuring a safe and long-term operation. Both symmetric and asymmetric stimulation pulse waveforms can be selected to provide wide flexibility for various stimulation environment. The stimulator IC designed using 0.18-μm standard CMOS process achieves 12.3 V of voltage compliance and can deliver 1 mA of maximum stimulation current with 5-bit resolution and high linearity. All circuit functions are integrated on-chip without external components, and the fabricated chip consumes only 0.095 mm² of active die area.

      더보기

      목차 (Table of Contents)

      • Abstract
      • I. INTRODUCTION
      • II. STIMULATION WAVEFORM
      • III. CONVENTIONAL CHARGE BALANCING TECHNIQUES
      • IV. CIRCUIT DESCRIPTION
      • Abstract
      • I. INTRODUCTION
      • II. STIMULATION WAVEFORM
      • III. CONVENTIONAL CHARGE BALANCING TECHNIQUES
      • IV. CIRCUIT DESCRIPTION
      • V. MEASUREMENT RESULTS
      • VI. CONCLUSIONS
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 L. Yao, "pulse-width-adaptive active charge balancing circuit with pulse-insertion based residual charge compensation and quantization for electrical stimulation applications" 1-4, 2015

      2 L. A. Geddes, "The strengthduration curve" BME-32 (BME-32): 458-459, 1985

      3 H. Chun, "Safety ensuring retinal prosthesis with precise charge balance and low power consumption" 8 (8): 108-118, 2014

      4 R. Ranjandish, "Polarity detection base pulse insertion for active charge balancing in electrical stimulation" 38-41, 2014

      5 K. Loizos, "Increasing electrical stimulation efficacy in degenerated retina : stimulus waveform design in a multiscale computational model" 26 (26): 1111-1120, 2018

      6 R. K. Shepherd, "Electrical stimulation of the auditory nerve : II. Effect of stimulus waveshape on single fibre response properties" 130 (130): 171-188, 1999

      7 X. Liu, "Design of a closed-loop, bidirectional brain machine interface system with energy efficient neural feature extraction and PID control" 11 : 729-, 2017

      8 S. Stanslaski, "Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation" 20 (20): 410-421, 2012

      9 K. Y. Qing, "Burstmodulated waveforms optimize electrical stimuli for charge efficiency and fiber selectivity" 23 (23): 936-945, 2015

      10 J. -Y. Son, "An implantable neural stimulator IC with anodic current pulse modulation based active charge balancing" 8 : 136449-136458, 2020

      1 L. Yao, "pulse-width-adaptive active charge balancing circuit with pulse-insertion based residual charge compensation and quantization for electrical stimulation applications" 1-4, 2015

      2 L. A. Geddes, "The strengthduration curve" BME-32 (BME-32): 458-459, 1985

      3 H. Chun, "Safety ensuring retinal prosthesis with precise charge balance and low power consumption" 8 (8): 108-118, 2014

      4 R. Ranjandish, "Polarity detection base pulse insertion for active charge balancing in electrical stimulation" 38-41, 2014

      5 K. Loizos, "Increasing electrical stimulation efficacy in degenerated retina : stimulus waveform design in a multiscale computational model" 26 (26): 1111-1120, 2018

      6 R. K. Shepherd, "Electrical stimulation of the auditory nerve : II. Effect of stimulus waveshape on single fibre response properties" 130 (130): 171-188, 1999

      7 X. Liu, "Design of a closed-loop, bidirectional brain machine interface system with energy efficient neural feature extraction and PID control" 11 : 729-, 2017

      8 S. Stanslaski, "Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation" 20 (20): 410-421, 2012

      9 K. Y. Qing, "Burstmodulated waveforms optimize electrical stimuli for charge efficiency and fiber selectivity" 23 (23): 936-945, 2015

      10 J. -Y. Son, "An implantable neural stimulator IC with anodic current pulse modulation based active charge balancing" 8 : 136449-136458, 2020

      11 R. Ranjandish, "An active charge balancing method based on anodic current variation monitoring" 1-4, 2017

      12 K. Sooksood, "An active approach for charge balancing in functional electrical stimulation" 4 (4): 162-170, 2010

      13 Hyung Seok Kim, "An Ultra Low-power Low-noise Neural Recording Analog Front-end IC for Implantable Devices" 대한전자공학회 18 (18): 454-460, 2018

      14 H. -M. Lee, "A powerefficient wireless system with adaptive supply control for deep brain stimulation" 48 (48): 2203-2216, 2013

      15 M. N. van Dongen, "A powerefficient multichannel neural stimulator using highfrequency pulsed excitation from an unfiltered dynamic supply" 10 (10): 61-71, 2016

      16 E. Maghsoudloo, "A new charge balancing scheme for electrical microstimulators based on modulated anodic stimulation pulse width" 2443-2446, 2016

      17 S. Moradi, "A new approach to design safe and reliable electrical stimulator" 15 (15): 305-316, 2014

      18 R. R. Harrison, "A low-power lownoise CMOS amplifier for neural recording applications" 38 (38): 958-965, 2003

      19 R. R. Harrison, "A low-power lownoise CMOS amplifier for neural recording applications" 20 (20): 410-421, 2012

      20 H. -G. Rhew, "A fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management" 49 : 213-, 2014

      21 R. Ranjandish, "A Fully Fail-Safe Capacitive-Based Charge Metering Method for Active Charge Balancing in Deep Brain Stimulation" 2018

      22 A. Taschwer, "A Charge Balanced Neural Stimulator with 3.3 V to 49 V Supply Compliance and Arbitrary Programmable Current Pulse Shapes" 2018

      23 M. Ortmanns, "A 232-channel epiretinal stimulator ASIC" 42 (42): 2946-2959, 2007

      24 A. Banuaji, "A 15-V bidirectional ultrasound interface analog front-end IC for medical imaging using standard CMOS technology" 61 (61): 604-608, 2014

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2014-01-21 학회명변경 영문명 : The Institute Of Electronics Engineers Of Korea -> The Institute of Electronics and Information Engineers KCI등재
      2010-11-25 학술지명변경 한글명 : JOURNAL OF SEMICONDUTOR TECHNOLOGY AND SCIENCE -> JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2007-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.42 0.13 0.35
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.3 0.29 0.308 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼