RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      통계학적 학습을 이용한 머리와 어깨선의 위치 찾기 = Localizing Head and Shoulder Line Using Statistical Learning

      한글로보기

      https://www.riss.kr/link?id=A5012776

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract) kakao i 다국어 번역

      영상에서 사람의 머리위치를 찾는 문제에 있어서 어깨선 정보를 이용하는 것은 아주 유용하다. 영상에서 머리 외곽선과 어깨선의 형태는 일정한 변형을 유지하면서 같이 움직이므로 이를 ASM(Active Shape Model) 기법을 사용해서 통계적으로 모델링 할 수 있다. 그러나 ASM 모델은 국부적인 에지나 그래디언트에 의존하므로 배경 에 지나 클러터 성분에 민감하다. 한편 AAM(Active Appearance Model) 모델은 텍스쳐 등을 이용하지만, 사람의 피부색, 머리색깔, 옷 색깔등의 차이로 인해서 통계적인 학습방법을 쓰기가 어렵고, 전체 비디오에서 외모(Appearance)가 시간적으로 변한다. 따라서, 본 논문에서는 외모(Apperance) 모델을 변화에 따라 바꾸는 대신, 영상의 각 화소를 머리, 어깨, 배경으로 구분하는 분별적 외모 모델(discriminative appearance)를 사용한다. 실험을 통해서 제안된 방법이 기존의 기법에 비해서 포즈변화와 가려짐, 조명의 변화 등에 강인함을 보여준다. 또한 제안된 기법은 실시간으로 작동하는 장점 또한 가진다.
      번역하기

      영상에서 사람의 머리위치를 찾는 문제에 있어서 어깨선 정보를 이용하는 것은 아주 유용하다. 영상에서 머리 외곽선과 어깨선의 형태는 일정한 변형을 유지하면서 같이 움직이므로 이를 ...

      영상에서 사람의 머리위치를 찾는 문제에 있어서 어깨선 정보를 이용하는 것은 아주 유용하다. 영상에서 머리 외곽선과 어깨선의 형태는 일정한 변형을 유지하면서 같이 움직이므로 이를 ASM(Active Shape Model) 기법을 사용해서 통계적으로 모델링 할 수 있다. 그러나 ASM 모델은 국부적인 에지나 그래디언트에 의존하므로 배경 에 지나 클러터 성분에 민감하다. 한편 AAM(Active Appearance Model) 모델은 텍스쳐 등을 이용하지만, 사람의 피부색, 머리색깔, 옷 색깔등의 차이로 인해서 통계적인 학습방법을 쓰기가 어렵고, 전체 비디오에서 외모(Appearance)가 시간적으로 변한다. 따라서, 본 논문에서는 외모(Apperance) 모델을 변화에 따라 바꾸는 대신, 영상의 각 화소를 머리, 어깨, 배경으로 구분하는 분별적 외모 모델(discriminative appearance)를 사용한다. 실험을 통해서 제안된 방법이 기존의 기법에 비해서 포즈변화와 가려짐, 조명의 변화 등에 강인함을 보여준다. 또한 제안된 기법은 실시간으로 작동하는 장점 또한 가진다.

      더보기

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call Ω-shape, move together in a consistent way within a limited range of deformation, we can build a statistical shape model using Active Shape Model (ASM). However, when the conventional ASM is applied to Ω-shape fitting, it is very sensitive to background edges and clutter because it relies only on the local edge or gradient. Even though appearance is a good alternative feature for matching the target object to image, it is difficult to learn the appearance of the Ω -shape because of the significant difference between people’s skin, hair and clothes, and because appearance does not remain the same throughout the entire video. Therefore, instead of learning appearance or updating appearance as it changes, we model the discriminative appearance where each pixel is classified into head, torso and background classes, and update the classifier to obtain the appropriate discriminative appearance in the current frame. Accordingly, we make use of two features in fitting Ω-shape, edge gradient which is used for localization, and discriminative appearance which contributes to stability of the tracker. The simulation results show that the proposed method is very robust to pose change, occlusion, and illumination change in tracking the head and shoulder line of people. Another advantage is that the proposed method operates in real time.
      번역하기

      Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call Ω-shape, move together in a consistent way within a limi...

      Associating the shoulder line with head location of the human body is useful in verifying, localizing and tracking persons in an image. Since the head line and the shoulder line, what we call Ω-shape, move together in a consistent way within a limited range of deformation, we can build a statistical shape model using Active Shape Model (ASM). However, when the conventional ASM is applied to Ω-shape fitting, it is very sensitive to background edges and clutter because it relies only on the local edge or gradient. Even though appearance is a good alternative feature for matching the target object to image, it is difficult to learn the appearance of the Ω -shape because of the significant difference between people’s skin, hair and clothes, and because appearance does not remain the same throughout the entire video. Therefore, instead of learning appearance or updating appearance as it changes, we model the discriminative appearance where each pixel is classified into head, torso and background classes, and update the classifier to obtain the appropriate discriminative appearance in the current frame. Accordingly, we make use of two features in fitting Ω-shape, edge gradient which is used for localization, and discriminative appearance which contributes to stability of the tracker. The simulation results show that the proposed method is very robust to pose change, occlusion, and illumination change in tracking the head and shoulder line of people. Another advantage is that the proposed method operates in real time.

      더보기

      목차 (Table of Contents)

      • 요약
      • ABSTRACT
      • Ⅰ. 서론
      • Ⅱ. 특징 추출
      • Ⅲ. 분별적 외모를 갖는 ASM(Active Shape Model with the DA feature)
      • 요약
      • ABSTRACT
      • Ⅰ. 서론
      • Ⅱ. 특징 추출
      • Ⅲ. 분별적 외모를 갖는 ASM(Active Shape Model with the DA feature)
      • Ⅳ. 실험결과
      • Ⅴ. 결론 및 향후과제
      • 참고문헌
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2015-01-01 평가 학술지 통합(등재유지)
      2014-11-07 학술지명변경 한글명 : 한국통신학회논문지C</br>외국어명 : The Journal of Korean Institute of Communications and Information Sciences C KCI등재
      2014-08-08 학술지명변경 한글명 : 한국통신학회논문지C</br>외국어명 : The Journal of the Korean Institute of Communication Science C KCI등재
      2014-08-08 학술지명변경 한글명 : 한국통신학회논문지C</br>외국어명 : The Journal of the Korean Institute of Communication Science C KCI등재
      2003-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      2001-01-01 평가 등재후보학술지 선정(신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼