RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      자율주행을 위한 다중작업학습에 관한 연구 = Study on Multi-Task Learning for Autonomous Driving

      한글로보기

      https://www.riss.kr/link?id=A108752103

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      For autonomous driving, we explored a method for safe autonomous driving based on the given hardware conditions, taking into account the performance (accuracy, processing speed) of image recognition tasks performed by the corresponding sensors. In particular, we analyzed the performance of multiple image recognition optimization tasks through multi-task learning (MTL), which can process several tasks simultaneously, and proposed a MDE (Multi-task Decision and Enhancement) algorithm for optimization. Using this MDE algorithm, it is possible to determine multiple working sets that can minimize the overall delay time while optimizing accuracy. As a result of the experiment, we achieved up to around 15-54% reduction in execution time with similar accuracy performance through this strategy.
      번역하기

      For autonomous driving, we explored a method for safe autonomous driving based on the given hardware conditions, taking into account the performance (accuracy, processing speed) of image recognition tasks performed by the corresponding sensors. In par...

      For autonomous driving, we explored a method for safe autonomous driving based on the given hardware conditions, taking into account the performance (accuracy, processing speed) of image recognition tasks performed by the corresponding sensors. In particular, we analyzed the performance of multiple image recognition optimization tasks through multi-task learning (MTL), which can process several tasks simultaneously, and proposed a MDE (Multi-task Decision and Enhancement) algorithm for optimization. Using this MDE algorithm, it is possible to determine multiple working sets that can minimize the overall delay time while optimizing accuracy. As a result of the experiment, we achieved up to around 15-54% reduction in execution time with similar accuracy performance through this strategy.

      더보기

      참고문헌 (Reference)

      1 곽대원 ; 유지상 ; 손민준 ; 박민수 ; 최동건 ; 이성진, "자율주행을 위한 실시간 차선인식 기술에 대한 고찰" 한국통신학회 48 (48): 589-599, 2023

      2 배은지 ; 이성진, "이미지 분류 네트워크에서의 효율적 훈련 기법" 한국통신학회 46 (46): 1087-1096, 2021

      3 J. Redmon, "You only look once : Unified, real-time object detection" 779-788, 2016

      4 C. Han, "YOLOPv2: Better, faster, stronger for panoptic driving perception, arXiv preprint arXiv:2208.11434"

      5 D. Wu, "YOLOP : You only look once for panoptic driving perception" 19 : 550-562, 2022

      6 Z. Ge, "Y OLOX: Exceeding YOLO series in 2021, arX iv preprint arXiv:2107.08430"

      7 Z. Qin, "Ultra fast structure aware deep lane detection" 1-14, 2022

      8 O. Ronneberger, "U-Net : Convolutional networks for biomedical image segmentation" 9351 : 2015

      9 X. Du, "SpineNet : Learning scale-permuted backbone for recognition and localization" 11589-11598, 2020

      10 X. Lai, "Spherical transformer for LiDAR-based 3D recognition" 17545-17555, 2023

      1 곽대원 ; 유지상 ; 손민준 ; 박민수 ; 최동건 ; 이성진, "자율주행을 위한 실시간 차선인식 기술에 대한 고찰" 한국통신학회 48 (48): 589-599, 2023

      2 배은지 ; 이성진, "이미지 분류 네트워크에서의 효율적 훈련 기법" 한국통신학회 46 (46): 1087-1096, 2021

      3 J. Redmon, "You only look once : Unified, real-time object detection" 779-788, 2016

      4 C. Han, "YOLOPv2: Better, faster, stronger for panoptic driving perception, arXiv preprint arXiv:2208.11434"

      5 D. Wu, "YOLOP : You only look once for panoptic driving perception" 19 : 550-562, 2022

      6 Z. Ge, "Y OLOX: Exceeding YOLO series in 2021, arX iv preprint arXiv:2107.08430"

      7 Z. Qin, "Ultra fast structure aware deep lane detection" 1-14, 2022

      8 O. Ronneberger, "U-Net : Convolutional networks for biomedical image segmentation" 9351 : 2015

      9 X. Du, "SpineNet : Learning scale-permuted backbone for recognition and localization" 11589-11598, 2020

      10 X. Lai, "Spherical transformer for LiDAR-based 3D recognition" 17545-17555, 2023

      11 E. Xie, "SegFormer : Simple and efficient design for semantic segmentation with transformers" 34 : 12077-12090, 2021

      12 A. Howard, "Searching for MobileNetV3" 1314-1324, 2019

      13 W. Liu, "SSD : Single shot MultiBox detector" 2016

      14 Z. Liu, "Rethinking the value of network pruning, arXiv preprint axXiv:1810. 05270"

      15 D. Kwak, "Rethinking breast cancer diagnosis through deep learning based image recognition" 23 (23): 2307-, 2023

      16 J. Guo, "Research on road scene understanding of autonomous vehicles based on multi-task learning" 23 (23): 2023

      17 Y. J. Lee, "Recent R&D trends for lightweight deep learning" 34 (34): 40-50, 2019

      18 A. Kirillov, "Panoptic feature pyramid networks" 2019

      19 S. Shi, "PV-RCNN++ : Point-voxel feature set abstraction with local vector representation for 3d object detection" 131 : 531-551, 2023

      20 Marvin Teichmann, "MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving" IEEE 1013-1020, 2018

      21 K. Ishihara, "Multi-task learning with attention for end-to-end autonomous driving" 2896-2905, 2021

      22 A. G. Howard, "MobileNets:Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861"

      23 M. Sandler, "MobileNetV2:Inverted residuals and linear bottlenecks" 4510-4520, 2018

      24 W. Wang, "InternImage : Exploring largescale vision foundation models with deformable convolutions" 14408-14419, 2023

      25 D. Vu, "HybridNets:End-to-end perception network, arXiv preprint arXiv:2203.09035"

      26 T. Lin, "Focal loss for dense object detection" 42 (42): 318-327, 2020

      27 T. Lin, "Feature pyramid networks for object detection" 936-944, 2017

      28 D. -G. Lee, "Fast drivable areas estimation with multi-task learning for real-time autonomous driving assistant" 11 (11): 10713-, 2021

      29 M. Tan, "EfficientDet : Scalable and efficient object detection" 10778-10787, 2020

      30 A. I. Károly, "Deep learning in robotics : Survey on model structures and training strategies" 51 (51): 266-279, 2021

      31 Y. Hong, "Crossmodality knowledge distillation network for monocular 3d object detection" 13670 : 2022

      32 F. Yu, "BDD100K: A large-scale diverse driving video database"

      33 S. Grigorescu, "A survey of deep learning techniques for autonomous driving" 37 (37): 2019

      34 H. Lee, "A method of deep learning model optimization for image classification on edge device" 22 (22): 2022

      35 J. Terven, "A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond, arXiv preprint arXiv:2304.00501"

      36 Y. Kim, "3D Dual-Fusion: Dual-domain dualquery camera-lidar fusion for 3d object detection, arXiv Preprint arXiv:2211.13589"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼