RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      신뢰성 있는 지구 저궤도 위성 통신망 최적화를 위한 강화학습 기반 동적 라우팅 알고리즘 = Reinforcement Learning-Based Dynamic Routing for Robust Optimization of Low Earth Orbit (LEO) Satellite Communication Networks

      한글로보기

      https://www.riss.kr/link?id=A108752102

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, satellite communication has garnered significant attention as a novel industry capable of providing global internet access in conjunction with the next-generation communication system, 6G. Notably, low-Earth orbit satellites, operating at comparatively lower altitudes, offer an advantage in communication system configuration due to their closer proximity to Earth. The inherent characteristics of LEO satellites, such as their high orbital speed and deployment of numerous satellites in the same orbit, necessitate research into inter-satellite routing technology for enhanced communication performance. Consequently, this study presents a routing algorithm aimed at optimizing the LEO satellite communication network by employing reinforcement learning, a machine learning technique. By applying various reinforcement learning algorithms to satellite topologies that may arise in space environments, the superiority of the algorithm is assessed, and simultaneously, the feasibility of implementing inter-satellite routing in space is demonstrated.
      번역하기

      Recently, satellite communication has garnered significant attention as a novel industry capable of providing global internet access in conjunction with the next-generation communication system, 6G. Notably, low-Earth orbit satellites, operating at co...

      Recently, satellite communication has garnered significant attention as a novel industry capable of providing global internet access in conjunction with the next-generation communication system, 6G. Notably, low-Earth orbit satellites, operating at comparatively lower altitudes, offer an advantage in communication system configuration due to their closer proximity to Earth. The inherent characteristics of LEO satellites, such as their high orbital speed and deployment of numerous satellites in the same orbit, necessitate research into inter-satellite routing technology for enhanced communication performance. Consequently, this study presents a routing algorithm aimed at optimizing the LEO satellite communication network by employing reinforcement learning, a machine learning technique. By applying various reinforcement learning algorithms to satellite topologies that may arise in space environments, the superiority of the algorithm is assessed, and simultaneously, the feasibility of implementing inter-satellite routing in space is demonstrated.

      더보기

      참고문헌 (Reference)

      1 이현수 ; 김중헌, "저궤도 인공위성에 적용되는 심층강화학습 기술 동향" 한국통신학회 48 (48): 196-205, 2023

      2 박찬영 ; 김규선 ; 이경진 ; 윤일수, "자율적인 UAM 시스템의 효율적인 무인 정보수집 및 감시를 위한 멀티 에이전트 기반 심층 강화학습" 한국통신학회 48 (48): 176-184, 2023

      3 B. Di, "Ultra-Dense LEO : Integration of satellite access networks into 5G and beyond" 26 (26): 62-69, 2019

      4 K. E. Eichensehr, "Ukraine, cyberattacks, and the lessons for international law" 116 : 145-149, 2022

      5 정택현 ; 김상원 ; 김기천, "N-DQN: 계층화된 병렬 강화학습 모델의 구현 및 연구" 한국통신학회 44 (44): 1961-1974, 2019

      6 Guillen-Perez Antonio, "Multi-Agent Deep Reinforcement Learning to Manage Connected Autonomous Vehicles at Tomorrow's Intersections" Institute of Electrical and Electronics Engineers (IEEE) 71 (71): 7033-7043, 2022

      7 K. Q. Nguyen, "Monte carlo tree search for collaboration control of ghosts in Ms. Pac-Man" 5 (5): 57-68, 2013

      8 V. Mnih, "Human-level control through deep reinforcement learning" 518 (518): 529-533, 2015

      9 M. Kaloev, "Experiments focused on exploration in deep reinforcement learning" 351-355, 2021

      10 R. Bellman, "Dynamic programming" 153 (153): 34-37, 1966

      1 이현수 ; 김중헌, "저궤도 인공위성에 적용되는 심층강화학습 기술 동향" 한국통신학회 48 (48): 196-205, 2023

      2 박찬영 ; 김규선 ; 이경진 ; 윤일수, "자율적인 UAM 시스템의 효율적인 무인 정보수집 및 감시를 위한 멀티 에이전트 기반 심층 강화학습" 한국통신학회 48 (48): 176-184, 2023

      3 B. Di, "Ultra-Dense LEO : Integration of satellite access networks into 5G and beyond" 26 (26): 62-69, 2019

      4 K. E. Eichensehr, "Ukraine, cyberattacks, and the lessons for international law" 116 : 145-149, 2022

      5 정택현 ; 김상원 ; 김기천, "N-DQN: 계층화된 병렬 강화학습 모델의 구현 및 연구" 한국통신학회 44 (44): 1961-1974, 2019

      6 Guillen-Perez Antonio, "Multi-Agent Deep Reinforcement Learning to Manage Connected Autonomous Vehicles at Tomorrow's Intersections" Institute of Electrical and Electronics Engineers (IEEE) 71 (71): 7033-7043, 2022

      7 K. Q. Nguyen, "Monte carlo tree search for collaboration control of ghosts in Ms. Pac-Man" 5 (5): 57-68, 2013

      8 V. Mnih, "Human-level control through deep reinforcement learning" 518 (518): 529-533, 2015

      9 M. Kaloev, "Experiments focused on exploration in deep reinforcement learning" 351-355, 2021

      10 R. Bellman, "Dynamic programming" 153 (153): 34-37, 1966

      11 Lilian Del Consuelo Hernandez Ruiz Gaytan, "Dynamic Scheduling for High Throughput Satellites Employing Priority Code Scheme" Institute of Electrical and Electronics Engineers (IEEE) 3 : 2044-2054, 2015

      12 Y. Su, "Broadband LEO satellite communications : Architectures and key technologies" 26 (26): 55-61, 2019

      13 P. Zuo, "An intelligent routing algorithm for leo satellites based on deep reinforcement learning" 1-5, 2021

      14 M. Neinavaie, "Acquisition, doppler tracking, and positioning with starlink LEO satellites : First results" 58 (58): 2606-2610, 2022

      15 V. B. Ajabshir, "A low-cost q-learning-based approach to handle continuous space problems for decentralized multi-agent robot navigation in cluttered environments" 10 : 35287-35301, 2022

      16 N. Gholizadeh, "A comparative study of reinforcement learning algorithms for distribution network reconfiguration with deep q-learning-based action sampling" 11 : 13714-13723, 2023

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼