RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      딥러닝 모델 기반의 수두 발생 예측

      한글로보기

      https://www.riss.kr/link?id=A106516029

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Chicken pox is a highly diffuse disease, and the need for surveillance research to predict it is increasing. Initially used CDC data takes at least a week to a month for this data to be confirmed. So there is a need to predict chicken pox using web data that can be collected in real time. Chicken pox, unlike other infectious diseases, appears frequently in web data regardless of actual outbreak data. Therefore, their linear relationship is not clear enough to be applied to existing linear regression models. In this paper, we predict chicken pox through deep learning model that can model nonlinear relationship. In addition, the prediction accuracy is improved by extracting the keyword related to the outbreak of chicken pox. Finally, the LSTM prediction model was able to predict the chicken pox for a longer period of time and had the highest correlation coefficient of 0.97114. The root mean square error was 341.01547, which was overwhelmingly smaller than the linear regression model.
      번역하기

      Chicken pox is a highly diffuse disease, and the need for surveillance research to predict it is increasing. Initially used CDC data takes at least a week to a month for this data to be confirmed. So there is a need to predict chicken pox using web da...

      Chicken pox is a highly diffuse disease, and the need for surveillance research to predict it is increasing. Initially used CDC data takes at least a week to a month for this data to be confirmed. So there is a need to predict chicken pox using web data that can be collected in real time. Chicken pox, unlike other infectious diseases, appears frequently in web data regardless of actual outbreak data. Therefore, their linear relationship is not clear enough to be applied to existing linear regression models. In this paper, we predict chicken pox through deep learning model that can model nonlinear relationship. In addition, the prediction accuracy is improved by extracting the keyword related to the outbreak of chicken pox. Finally, the LSTM prediction model was able to predict the chicken pox for a longer period of time and had the highest correlation coefficient of 0.97114. The root mean square error was 341.01547, which was overwhelmingly smaller than the linear regression model.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 관련연구
      • 3. 배경지식
      • 4. 실험환경 및 데이터 수집
      • Abstract
      • 1. 서론
      • 2. 관련연구
      • 3. 배경지식
      • 4. 실험환경 및 데이터 수집
      • 5. 키워드 추출
      • 6. 사전연구
      • 7. 딥러닝을 통한 수두 예측
      • 7. 예측 모델 비교 및 평가
      • 8. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 J. Kim, "Weekly ILI patient ratio change prediction using news articles with support vector machine" 20 (20): 259-, 2019

      2 A. Culotta, "Towards detecting influenza epidemics by analyzing Twitter messages" 115-122, 2010

      3 R. Chunara, "Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak" 86 (86): 39-45, 2012

      4 T. Chai, "Root mean square error(RMSE)or mean absolute error(MAE)?" 7 : 1525-1534, 2014

      5 H. Achrekar, "Predicting flu trends using twitter data" 702-707, 2011

      6 J. Benesty, "Noise Reduction in Speech Processing" Springer 1-4, 2009

      7 F. A. Gers, "Learning to forget : Continual prediction with LSTM" 1999

      8 E. L. Park, "KoNLPy : Korean natural language processing in Python" 6 : 2014

      9 "KCDC"

      10 D. C. Montgomery, "Introduction to linear regression analysis vol. 821" John Wiley & Sons 2012

      1 J. Kim, "Weekly ILI patient ratio change prediction using news articles with support vector machine" 20 (20): 259-, 2019

      2 A. Culotta, "Towards detecting influenza epidemics by analyzing Twitter messages" 115-122, 2010

      3 R. Chunara, "Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak" 86 (86): 39-45, 2012

      4 T. Chai, "Root mean square error(RMSE)or mean absolute error(MAE)?" 7 : 1525-1534, 2014

      5 H. Achrekar, "Predicting flu trends using twitter data" 702-707, 2011

      6 J. Benesty, "Noise Reduction in Speech Processing" Springer 1-4, 2009

      7 F. A. Gers, "Learning to forget : Continual prediction with LSTM" 1999

      8 E. L. Park, "KoNLPy : Korean natural language processing in Python" 6 : 2014

      9 "KCDC"

      10 D. C. Montgomery, "Introduction to linear regression analysis vol. 821" John Wiley & Sons 2012

      11 A. Wilder-Smith, "Internet-based media coverage on dengue in Sri Lanka between 2007 and 2015" 9 (9): 31620-, 2016

      12 R. Pascanu, "How to construct deep recurrent neural networks"

      13 I. S. O. Hayate, "Forecasting word model : Twitter-based influenza surveillance and prediction" 76-86, 2016

      14 S. Volkova, "Forecasting influenza-like illness dynamics for military populations using neural networks and social media" 12 (12): e0188941-, 2017

      15 T. Mikolov, "Distributed representations of words and phrases and their compositionality" 3111-3119, 2013

      16 C. de Almeida Marques-Toledo, "Dengue prediction by the web : Tweets are a useful tool for estimating and forecasting Dengue at country and city level" 11 (11): e0005729-, 2017

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼