Authors report the performance indicator of Roll to Roll MC (hereinafter referred to as RTR) through experiment that it is possible to process 2.0G acceleration, which cannot be coped with in the existing FPCB RTR, by reducing the weight of the Dance...
Authors report the performance indicator of Roll to Roll MC (hereinafter referred to as RTR) through experiment that it is possible to process 2.0G acceleration, which cannot be coped with in the existing FPCB RTR, by reducing the weight of the Dancer roll system and controlling the torque using the servo motor. Proposed dancer roll system provides uniform tension to FPCB by solving problems such as high rotation speed, heat generation, and low torque, which were impossible to achieve with the conventional magnet clutch type RTR. Through the development of a lightweight processing method for rolls using magnesium material and the development of a torque control algorithm for servo motor, torque stability also increased. Due to the enabling technology developed in this study, the reaction speed of the dancer roll was improved and the target speed was achieved as well.