RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A 30 ‐Year Time Series of Transient Tracer‐Based Estimates of Anthropogenic Carbon in the Central Labrador Sea

      한글로보기

      https://www.riss.kr/link?id=O111345230

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        2169-9275

      • Online ISSN

        2169-9291

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We use a 30‐year time series (1986–2016) of dichlorodifluoromethane (CFC‐12) concentrations with a refined transit time distribution (TTD) method, to estimate the temporal variation of anthropogenic carbon (Cant) in the Central Labrador Sea. We ...

      We use a 30‐year time series (1986–2016) of dichlorodifluoromethane (CFC‐12) concentrations with a refined transit time distribution (TTD) method, to estimate the temporal variation of anthropogenic carbon (Cant) in the Central Labrador Sea. We determined that the saturation of CFC‐12 and sulfur hexafluroide (SF6) in newly‐formed Labrador Sea Water had departed significantly from 100% and varied systematically with time. Multiple linear regression of the time‐varying saturation, with the tracer's atmospheric growth rate and the wintertime mixed layer depth as independent variables, allowed reconstruction of the saturation history of CFC‐12 and SF6 in wintertime surface waters, which was implemented in the TTD method. Use of the time‐varying saturation for CFC‐12 gave Cant concentrations ∼7 μmol kg−1 larger than estimates obtained assuming a constant saturation of 100%. The resulting Cant column inventories were ∼20% larger and displayed lower interannual variability compared to conventional TTD‐based estimates. The column inventory of Cant increased at an average rate of 1.8 mol m−2 y−1 over the 30‐year period. However, the accumulation rate of Cant was higher than this average in the early 1990s and since 2013, whereas inventories remained almost unchanged between 2003 and 2012. The variation in the Cant accumulation rate is shown to be linked to temporal variability in the relative layer thickness of the annually ventilated Labrador Sea Water and the underlying Deep Intermediate Water. The non‐steady Cant accumulation highlights the importance of sampling frequency, especially in regions of variable deep mixing and high carbon inventories, and potential misinterpretation of Cant dynamics.
      Since the industrial revolution, humankind has emitted large amounts of carbon dioxide (CO2) to the atmosphere as a result of fossil fuel combustion and cement production. About 40% of this Anthropogenic CO2 (Cant) has been sequestered by the oceans, primarily in polar and subpolar regions. The Labrador Sea has been identified as one of the regions with the highest inventory of Cant. Here, as strong winds blow on the ocean's surface in wintertime, heat is lost to the atmosphere and water density increases. This process, defined as deep water convection, determines the mixing of surface water into the ocean interior and the transport of gases, like Cant, from surface to depth. In this work we estimate the concentrations, column inventories and storage rate of Cant in Labrador Sea between 1986 and 2016 by using gases that mimic Cant behavior. We observed that despite the overall increase in Cant that occurred between 1986 and 2016, the pace at which Cant increased has not been constant over time in the Labrador Sea. In fact, we observed periods with both fast and slow increases of Cant, which were influenced by the persistence of deep or shallow convection, respectively.



      In regions of ventilation, assuming a constant tracers' saturation in the transit time distribution method results in significant negative bias of anthropogenic carbon (Cant) estimates

      Annual estimates of Cant column inventory between 1986 and 2016 reveal a non‐steady accumulation rate of Cant in Labrador Sea

      The temporal variability of the Cant storage in the Central Labrador Sea appears to be linked to the strength of convection


      In regions of ventilation, assuming a constant tracers' saturation in the transit time distribution method results in significant negative bias of anthropogenic carbon (Cant) estimates
      Annual estimates of Cant column inventory between 1986 and 2016 reveal a non‐steady accumulation rate of Cant in Labrador Sea
      The temporal variability of the Cant storage in the Central Labrador Sea appears to be linked to the strength of convection

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼