RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Optical Flow 추정을 위한 딥러닝 기반의 Lightweight Deep Neural Network

      한글로보기

      https://www.riss.kr/link?id=A106486389

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Conventional methods for optical flow estimation are inappropriate for applications that demand real-time operation and small memory capacity. Deep learning based networks, such as FlowNet[l] and FlowNet2[2], have high accuracy and fast running time, but require more than 160M of parameters. Therefore, we introduce tow deep learning based networks called PWC-Net[3] and LiteFlowNet[4] that have compact number of parameters and also have effective performances. Introducing two network models of compact but effective CNN models for optical flows, called PWC-Net and LiteFlowNet.
      번역하기

      Conventional methods for optical flow estimation are inappropriate for applications that demand real-time operation and small memory capacity. Deep learning based networks, such as FlowNet[l] and FlowNet2[2], have high accuracy and fast running time, ...

      Conventional methods for optical flow estimation are inappropriate for applications that demand real-time operation and small memory capacity. Deep learning based networks, such as FlowNet[l] and FlowNet2[2], have high accuracy and fast running time, but require more than 160M of parameters. Therefore, we introduce tow deep learning based networks called PWC-Net[3] and LiteFlowNet[4] that have compact number of parameters and also have effective performances. Introducing two network models of compact but effective CNN models for optical flows, called PWC-Net and LiteFlowNet.

      더보기

      목차 (Table of Contents)

      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 본론
      • Ⅲ. 실험 결과
      • Ⅳ. 결론
      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 본론
      • Ⅲ. 실험 결과
      • Ⅳ. 결론
      • Ⅴ. 감사의 글
      • 참고문헌
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼