RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      나카가미 페이딩 채널에서 딥러닝 기반 송신 전력 제어 기법을 이용하는 무선통신 시스템에 대한 성능 분석 = Performance Analysis of Wireless Communication Systems Using Deep Learning Based Transmit Power Control in Nakagami Fading Channels

      한글로보기

      https://www.riss.kr/link?id=A107283745

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose a deep learning based transmit power control (TPC) scheme to improve the spectral and energy efficiency of wireless communication systems. In the wireless communication system, the positions of multiple transceivers follow a uniform distribution, and the performances of spectral and energy efficiency for the proposed TPC scheme are analyzed assuming the Nakagami fading channels. The proposed TPC scheme uses batch normalization to improve spectral and energy efficiency in deep learning based training. Through simulation, we compare the results of the spectral and energy efficiency of the proposed TPC scheme and the conventional one for various area sizes that limit the position range of the transceivers and Nakagami fading factors. Comparing the performance results, we verify that the proposed scheme provides better performance than the conventional one.
      번역하기

      In this paper, we propose a deep learning based transmit power control (TPC) scheme to improve the spectral and energy efficiency of wireless communication systems. In the wireless communication system, the positions of multiple transceivers follow a ...

      In this paper, we propose a deep learning based transmit power control (TPC) scheme to improve the spectral and energy efficiency of wireless communication systems. In the wireless communication system, the positions of multiple transceivers follow a uniform distribution, and the performances of spectral and energy efficiency for the proposed TPC scheme are analyzed assuming the Nakagami fading channels. The proposed TPC scheme uses batch normalization to improve spectral and energy efficiency in deep learning based training. Through simulation, we compare the results of the spectral and energy efficiency of the proposed TPC scheme and the conventional one for various area sizes that limit the position range of the transceivers and Nakagami fading factors. Comparing the performance results, we verify that the proposed scheme provides better performance than the conventional one.

      더보기

      참고문헌 (Reference)

      1 이웅섭, "딥러닝을 이용한 주변 무선단말 파악방안" 한국정보통신학회 22 (22): 527-533, 2018

      2 K. Simonyan, "Very deep convolutional networks for large-scale image recognition"

      3 H. Sun, "Learning to optimize : training deep neural networks for interference management" 66 (66): 5438-5453, 2018

      4 "IEEE 802.20 Channel Models Document, IEEE Standard 802.20-PD-08r1"

      5 W. Lee, "Deep power control : transmit power control scheme based on convolutional neural network" 22 (22): 1276-1279, 2018

      6 M. Kim, "Deep learning aided SCMA" 22 (22): 720-723, 2018

      7 S. Ioffe, "Batch normalization: accelerating deep network training by reducing internal covariate shift" 448-456, 2015

      8 Q. Shi, "An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel" 59 (59): 4331-4340, 2011

      9 Kingma, Diederik P., "Adam: A method for stochastic optimization"

      10 M. Kim, "A novel PAPR reduction scheme for OFDM system based on deep learning" 22 (22): 510-513, 2018

      1 이웅섭, "딥러닝을 이용한 주변 무선단말 파악방안" 한국정보통신학회 22 (22): 527-533, 2018

      2 K. Simonyan, "Very deep convolutional networks for large-scale image recognition"

      3 H. Sun, "Learning to optimize : training deep neural networks for interference management" 66 (66): 5438-5453, 2018

      4 "IEEE 802.20 Channel Models Document, IEEE Standard 802.20-PD-08r1"

      5 W. Lee, "Deep power control : transmit power control scheme based on convolutional neural network" 22 (22): 1276-1279, 2018

      6 M. Kim, "Deep learning aided SCMA" 22 (22): 720-723, 2018

      7 S. Ioffe, "Batch normalization: accelerating deep network training by reducing internal covariate shift" 448-456, 2015

      8 Q. Shi, "An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel" 59 (59): 4331-4340, 2011

      9 Kingma, Diederik P., "Adam: A method for stochastic optimization"

      10 M. Kim, "A novel PAPR reduction scheme for OFDM system based on deep learning" 22 (22): 510-513, 2018

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-11-23 학술지명변경 외국어명 : THE JOURNAL OF The KOREAN Institute Of Maritime information & Communication Science -> Journal of the Korea Institute Of Information and Communication Engineering KCI등재
      2011-11-16 학회명변경 영문명 : International Journal of Information and Communication Engineering(IJICE) -> The Korea Institute of Information and Communication Engineering KCI등재
      2011-11-14 학회명변경 한글명 : 한국해양정보통신학회 -> 한국정보통신학회
      영문명 : 미등록 -> International Journal of Information and Communication Engineering(IJICE)
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.22 0.424 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼