RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Positioning of a Mobile Robot Based on Odometry and a New Ultrasonic LPS

      한글로보기

      https://www.riss.kr/link?id=A104901075

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Odometry is a method that calculates the position and heading angle of a mobile robot using encoders attached to the wheels of the robot. Errors in the position and heading angle in odometry continuously increase as the operating time and moving dista...

      Odometry is a method that calculates the position and heading angle of a mobile robot using encoders attached to the wheels of the robot. Errors in the position and heading angle in odometry continuously increase as the operating time and moving distance increase. The solution to overcome these accumulated errors is to periodically compensate with the external absolute position information. An ultrasonic local positioning system (LPS) consists of multiple ultrasonic transmitters located in the environment and an ultrasonic receiver. In this study, ultrasonic transmitters are in a line at one side, and four transmitters are grouped for a coverage area. In order to measure the time of flights (TOFs) for an ultrasonic signal, the receiver predicted the transmitted time from each transmitter using a hyperbolic model. Four transmitters emit ultrasonic signals sequentially, and then the receiver calculates the position using the present measured distance and the pre-measured distance. In order to extend the distance that is measured, the receiver collects the ultrasonic signal and executes cross correlation with a sinusoidal signal. The measured distance data of the previous step causes the position error. This error is compensated for by the predicted distance data using a bilinear interpolation method. An extended Kalman filter is designed to combine odometry, a compass sensor, and an ultrasonic LPS. The proposed system provides reliable and accurate position and heading information, regardless of the operating time and moving distance.

      더보기

      참고문헌 (Reference)

      1 A. Hernandez, "Ultrasonic ranging sensor using simultaneous emissions from different transducers" 51 (51): 1660-1670, 2004

      2 H. H. Lin, "Ultrasonic localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering" 57 (57): 2024-2034, 2008

      3 A. Martinelli, "The odometry error of a mobile robot with a synchronous drive system" 18 (18): 399-405, 2002

      4 N. B. Priyantha, "The cricket location-support system" 32-43, 2000

      5 N. B. Priyantha, "The Cricket Indoor Location System" MIT 2005

      6 A. Martinelli, "Simultaneous localization and odometry self calibration for mobile robot" 22 (22): 75-85, 2007

      7 E. M. Nebot, "Sensors used for autonomous navigation, in Advances in Intelligent Autonomous Systems" Kluwer Academic Publishers 135-156, 1999

      8 M. R. McCarthy, "RF free ultrasonic positioning" 79-85, 2003

      9 A. R. Jimenez, "Precise localization of archaeological findings with a new ultrasonic 3D positioning sensor" 123-124 : 224-233, 2005

      10 W. J. Seo, "Position estimation using time difference of flight the multi-coded ultrasonic" 604-609, 2011

      1 A. Hernandez, "Ultrasonic ranging sensor using simultaneous emissions from different transducers" 51 (51): 1660-1670, 2004

      2 H. H. Lin, "Ultrasonic localization and pose tracking of an autonomous mobile robot via fuzzy adaptive extended information filtering" 57 (57): 2024-2034, 2008

      3 A. Martinelli, "The odometry error of a mobile robot with a synchronous drive system" 18 (18): 399-405, 2002

      4 N. B. Priyantha, "The cricket location-support system" 32-43, 2000

      5 N. B. Priyantha, "The Cricket Indoor Location System" MIT 2005

      6 A. Martinelli, "Simultaneous localization and odometry self calibration for mobile robot" 22 (22): 75-85, 2007

      7 E. M. Nebot, "Sensors used for autonomous navigation, in Advances in Intelligent Autonomous Systems" Kluwer Academic Publishers 135-156, 1999

      8 M. R. McCarthy, "RF free ultrasonic positioning" 79-85, 2003

      9 A. R. Jimenez, "Precise localization of archaeological findings with a new ultrasonic 3D positioning sensor" 123-124 : 224-233, 2005

      10 W. J. Seo, "Position estimation using time difference of flight the multi-coded ultrasonic" 604-609, 2011

      11 W. J. Seo, "Position estimation using hyperbolic model for time difference of flight of ultrasonic" 6036-6039, 2011

      12 B. Barshan, "Performance comparison of four time-of-flight estimation methods for sonar signals" 34 (34): 1616-1617, 1998

      13 Q. Meng, "Odometry based pose determination and errors measurement for a mobile robot with two steerable drive wheels" 41 (41): 263-282, 2004

      14 L. Ojeda, "Methods for the reduction of odometry errors in over-constrained mobile robots" 16 : 273-286, 2004

      15 J. Borenstein, "Measurement and correction of systematic odometry errors in mobile robots" 12 (12): 869-880, 1996

      16 A. Sanchez, "Low cost indoor ultrasonic positioning implemented in FPGA" 2709-2714, 2009

      17 C. Randell, "Low cost indoor positioning system" 2498 : 42-48, 2001

      18 D. Caltabiano, "Localization and self-calibration of a robot for volcano exploration" 1 : 586-591, 2004

      19 W. Wang, "Land vehicle navigation using odometry / INS / vision integrated system" 754-759, 2008

      20 M. Addlesee, "Implementing a sentient computing system" 34 (34): 50-56, 2001

      21 J. Borenstein, "Gyrodometry : a new method for combining data from gyros and odometry in mobile robots" 1 : 423-428, 1996

      22 A. Adam, "Fusion of fixation and odometry for vehicle navigation" 29 (29): 593-603, 1999

      23 A. Martinelli, "Evaluating the odometry error of a mobile robot" 1 : 853-858, 2002

      24 Y. Lu, "Channel model-based sensingfor indoor ultrasonic location systems" 83-88, 2011

      25 M. Hazas, "Broadband ultrasonic location systems for improved indoor positioning" 5 (5): 536-547, 2006

      26 J. Eckert, "An indoor localization framework or four-rotor flying robots using low-power sensor nodes" 60 (60): 336-344, 2011

      27 J. Urena, "Advanced sensorial system for an acoustic LPS" 31 (31): 393-401, 2007

      28 N. Houshangi, "Accurate mobile robot position determination using unscented Kalman filter" 846-851, 2005

      29 S. J. Kim, "Accurate hybrid global self-localization algorithm for indoor mobile robots with two-dimensional isotropic ultrasonic receivers" 60 (60): 3391-3404, 2011

      30 Jean Laneurit, "Accurate Vehicle Positioning on a Numerical Map" 제어·로봇·시스템학회 3 (3): 15-31, 2005

      31 M. Hazas, "A novel broadband ultrasonic location system" 2498 : 264-280, 2002

      32 A. Ward, "A new location technique for the active office" 4 (4): 42-47, 1997

      33 C. C. Tong, "A method for short or long range time-of-flight measurements using phase-detection with an analog circuit" 50 (50): 2001

      34 P. K. Ray, "A genetic algorithmbased approach to calculate the optimal configuration of ultrasonic sensors in a 3D position estimation system" 41 (41): 165-177, 2002

      35 Bong-Su Cho, "A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding" 대한기계학회 25 (25): 2907-2917, 2011

      36 J. M. M. Tur, "A closed-form expression for the uncertainty in odometry position estimate of an autonomous vehicle" 21 (21): 1017-1022, 2005

      37 G. Antonelli, "A calibration method for odometry of mobile robots based on the least-squares technique : theory and experimental validation" 21 (21): 994-1004, 2005

      38 백광렬, "A Multi-Robot Positioning System using a Multi-Code Ultrasonic Sensor Network and a Kalman Filter" 제어·로봇·시스템학회 8 (8): 1349-1355, 2010

      39 A. Mahajan, "3D position sensing using the differences in the time-of-flights from a wave source to various receivers" 17 (17): 2001

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼