RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      ALD ZnO 버퍼층 증착 온도가 전착 Cu₂O 박막 태양전지 소자 특성에 미치는 영향

      한글로보기

      https://www.riss.kr/link?id=A105233427

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. Cu₂O, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility (100 cm²/Vs). In spite of these various advantages, the efficiency of Cu₂O based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of Cu₂O solar cells can be the formation of CuO layer due to atmospheric surface oxidation of Cu₂O absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on Cu₂O surface. First, Cu₂O absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between 80°C to 140°C. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on Cu₂O based solar cells by J-V and XPS measurements.
      번역하기

      Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. Cu₂O, a...

      Beside several advantages, the PV power generation as a clean energy source, is still below the supply level due to high power generation cost. Therefore, the interest in fabricating low-cost thin film solar cells is increasing continuously. Cu₂O, a low cost photovoltaic material, has a wide direct band gap of ~2.1 eV has along with the high theoretical energy conversion efficiency of about 20%. On the other hand, it has other benefits such as earth-abundance, low cost, non-toxic, high carrier mobility (100 cm²/Vs). In spite of these various advantages, the efficiency of Cu₂O based solar cells is still significantly lower than the theoretical limit as reported in several literatures. One of the reasons behind the low efficiency of Cu₂O solar cells can be the formation of CuO layer due to atmospheric surface oxidation of Cu₂O absorber layer. In this work, atomic layer deposition method was used to remove the CuO layer that formed on Cu₂O surface. First, Cu₂O absorber layer was deposited by electrodeposition. On top of it buffer (ZnO) and TCO (AZO) layers were deposited by atomic layer deposition and rf-magnetron sputtering respectively. We fabricated the cells with a change in the deposition temperature of buffer layer ranging between 80°C to 140°C. Finally, we compared the performance of fabricated solar cells, and studied the influence of buffer layer deposition temperature on Cu₂O based solar cells by J-V and XPS measurements.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 1. 서론
      • 2. 실험 조건
      • 3. 결과
      • 4. 결론
      • ABSTRACT
      • 1. 서론
      • 2. 실험 조건
      • 3. 결과
      • 4. 결론
      • 참고문헌
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼