RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      기하적(幾何的) 계획법(計劃法)에 의한 강재(鋼材)트러스구조물(構造物)의 최적설계(最適設計)에 관한 연구(研究) = The Optimal Design of Steel Truss by Geometric Programming Method

      한글로보기

      https://www.riss.kr/link?id=A105306260

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      This paper applies an optimization algorithm for the elastic truss structures. The acceleration technique utilized in this study is the geometric programming method developed by the Operation Research or the applied methematics. The applicability and the efficiency of the algorithm applied in this study are tested for four different trusses. Test results show that the optimum solutions are obtained after only one or seven iterations which is very small compared with other techniques and no oscillation is needed for the convergency. Test rusults also show that the Geometric Programming Method is also effective algorithm for the convergency of the Optimum Solution in case of only being compared with the number of iteration.
      번역하기

      This paper applies an optimization algorithm for the elastic truss structures. The acceleration technique utilized in this study is the geometric programming method developed by the Operation Research or the applied methematics. The applicability and ...

      This paper applies an optimization algorithm for the elastic truss structures. The acceleration technique utilized in this study is the geometric programming method developed by the Operation Research or the applied methematics. The applicability and the efficiency of the algorithm applied in this study are tested for four different trusses. Test results show that the optimum solutions are obtained after only one or seven iterations which is very small compared with other techniques and no oscillation is needed for the convergency. Test rusults also show that the Geometric Programming Method is also effective algorithm for the convergency of the Optimum Solution in case of only being compared with the number of iteration.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼