RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      2차원 웨이브렛 패킷에 기반한 필기체 문자인식의 특징선택방법 = A Feature Selection for the Recognition of Handwritten Characters based on Two - Dimensional Wavelet Packet

      한글로보기

      https://www.riss.kr/link?id=A82294181

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 문자인식의 특징선택방법으로 2차원 웨이브렛 패킷을 이용하는 새로운 방법을 제안한다. 영상자료의 특징들로부터 중심특징을 선택하기위한 차원축소 기법으로 주성분분석 기법이 주로 사용된다. 하지만, 주성분분석 기법은 고유시스템에 의존하기 때문에, 이상치나 잡음등에 민감할 뿐만 아니라, 전역적 특징만을 선택 하는 경향이 있다. 때때로, 영상자료의 중요한 특징이 가장자리 부분이나 뾰족한 부분 같은 지역적 정보일 수 있다. 이러한 경우, 주성분분석 기법은 좋은 결과를 줄 수 없다. 또한 고유시 스템은 많은 계산시간을 요구한다.
      본 논문에서 원 자료는 2차원 웨이브렛 패킷기저에 의해 변환되고, 최적 판별 기저가 탐색된 후, 그것으로부터 적절한 특징이 선택된다. 주성분분석 기법과 비교하여, 제안된 방법은 웨이브렛의 좋은 특성에 의해 전역적 특징뿐만 아니라 지역적 특징의 선택이 빠른 계산시간으로 이루어진다.
      제안된 방법의 성능을 보이기 위해 PCA와 제안된 방법의 인식률의 실험결과가 분석되었다.
      번역하기

      본 논문에서는 문자인식의 특징선택방법으로 2차원 웨이브렛 패킷을 이용하는 새로운 방법을 제안한다. 영상자료의 특징들로부터 중심특징을 선택하기위한 차원축소 기법으로 주성분분석 ...

      본 논문에서는 문자인식의 특징선택방법으로 2차원 웨이브렛 패킷을 이용하는 새로운 방법을 제안한다. 영상자료의 특징들로부터 중심특징을 선택하기위한 차원축소 기법으로 주성분분석 기법이 주로 사용된다. 하지만, 주성분분석 기법은 고유시스템에 의존하기 때문에, 이상치나 잡음등에 민감할 뿐만 아니라, 전역적 특징만을 선택 하는 경향이 있다. 때때로, 영상자료의 중요한 특징이 가장자리 부분이나 뾰족한 부분 같은 지역적 정보일 수 있다. 이러한 경우, 주성분분석 기법은 좋은 결과를 줄 수 없다. 또한 고유시 스템은 많은 계산시간을 요구한다.
      본 논문에서 원 자료는 2차원 웨이브렛 패킷기저에 의해 변환되고, 최적 판별 기저가 탐색된 후, 그것으로부터 적절한 특징이 선택된다. 주성분분석 기법과 비교하여, 제안된 방법은 웨이브렛의 좋은 특성에 의해 전역적 특징뿐만 아니라 지역적 특징의 선택이 빠른 계산시간으로 이루어진다.
      제안된 방법의 성능을 보이기 위해 PCA와 제안된 방법의 인식률의 실험결과가 분석되었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      We propose a new approach to the feature selection for the classification of handwritten characters using two-dimensional(2D) wavelet packet bases. To extract key features of an image data, for the dimension reduction Principal Component Analysis(PCA) has been most frequently used. However PCA relies on the eigenvalue system, it is not only sensitive to outliers and perturbations, but has a tendency to select only global features. Since the important features for the image data are often characterized by local information such as edges and spikes, PCA does not provide good solutions to such problems. Also solving an eigenvalue system usually requires high cost in its computation.
      In this paper, the original data is transformed with 2D wavelet packet bases and the best discriminant basis is searched, from which relevant features are selected. In contrast to PCA solutions, the fast selection of detailed features as well as global features is possible by virtue of the good properties of wavelets.
      Experiment results on the recognition rates of PCA and our approach are compared to show the performance of the proposed method.
      번역하기

      We propose a new approach to the feature selection for the classification of handwritten characters using two-dimensional(2D) wavelet packet bases. To extract key features of an image data, for the dimension reduction Principal Component Analysis(PCA)...

      We propose a new approach to the feature selection for the classification of handwritten characters using two-dimensional(2D) wavelet packet bases. To extract key features of an image data, for the dimension reduction Principal Component Analysis(PCA) has been most frequently used. However PCA relies on the eigenvalue system, it is not only sensitive to outliers and perturbations, but has a tendency to select only global features. Since the important features for the image data are often characterized by local information such as edges and spikes, PCA does not provide good solutions to such problems. Also solving an eigenvalue system usually requires high cost in its computation.
      In this paper, the original data is transformed with 2D wavelet packet bases and the best discriminant basis is searched, from which relevant features are selected. In contrast to PCA solutions, the fast selection of detailed features as well as global features is possible by virtue of the good properties of wavelets.
      Experiment results on the recognition rates of PCA and our approach are compared to show the performance of the proposed method.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. INTRODUCTION
      • 2. TWO - DIMENTIONAL WAVELET PACKET FUNCTIONS
      • 3. PROPOSED ALGORITHM : 2DWP - DB
      • 요약
      • Abstract
      • 1. INTRODUCTION
      • 2. TWO - DIMENTIONAL WAVELET PACKET FUNCTIONS
      • 3. PROPOSED ALGORITHM : 2DWP - DB
      • 4. EXPERIMENTS AND CONCLUDING REMARKS
      • REFERENCES
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼