RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      운동학적 접근 방법을 사용한 복잡한 인간 동작 질의 시스템 = A Kinematic Approach to Answering Similarity Queries on Complex Human Motion Data

      한글로보기

      https://www.riss.kr/link?id=A103035106

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently there has arisen concern in both the database community and the graphics society about data retrieval from large motion databases because the high dimensionality of motion data implies high costs. In this circumstance, finding an effective distance measure and an efficient query processing method for such data is a challenging problem. This paper presents an elaborate motion query processing system, SMoFinder (Similar Motion Finder), which incorporates a novel kinematic distance measure and an efficient indexing strategy via adaptive frame segmentation. To this end, we regard human motions as multi-linkage kinematics and propose the weighted Minkowski distance metric. For efficient indexing, we devise a new adaptive segmentation method that chooses representative frames among similar frames and stores chosen frames instead of all frames. For efficient search, we propose a new search method that processes k-nearest neighbors queries over only representative frames. Our experimental results show that the size of motion databases is reduced greatly (x1/25) but the search capability of SMoFinder is equal to or superior to that of other systems.
      번역하기

      Recently there has arisen concern in both the database community and the graphics society about data retrieval from large motion databases because the high dimensionality of motion data implies high costs. In this circumstance, finding an effective di...

      Recently there has arisen concern in both the database community and the graphics society about data retrieval from large motion databases because the high dimensionality of motion data implies high costs. In this circumstance, finding an effective distance measure and an efficient query processing method for such data is a challenging problem. This paper presents an elaborate motion query processing system, SMoFinder (Similar Motion Finder), which incorporates a novel kinematic distance measure and an efficient indexing strategy via adaptive frame segmentation. To this end, we regard human motions as multi-linkage kinematics and propose the weighted Minkowski distance metric. For efficient indexing, we devise a new adaptive segmentation method that chooses representative frames among similar frames and stores chosen frames instead of all frames. For efficient search, we propose a new search method that processes k-nearest neighbors queries over only representative frames. Our experimental results show that the size of motion databases is reduced greatly (x1/25) but the search capability of SMoFinder is equal to or superior to that of other systems.

      더보기

      참고문헌 (Reference)

      1 H. T. Shen, "Towards effective indexing for very large video sequence database" ACM 730-741, 2005

      2 Hyungsoo Jung, "SMoFinder: A System for Querying Complex Human Motions Using a Kinematic Approach" 640-643, 2008

      3 L. Chen, "Robust and fast similarity search for moving object trajectories" ACM 491-502, 2005

      4 A. Guttman, "R-trees: a dynamic index structure for spatial searching" 47-57, 1984

      5 Y. Chen, "Querying complex spatio-temporal sequences in human motion databases" 90-99, 2008

      6 P. Ciaccia, "M-tree: An efficient access method for similarity search in metric spaces" 426-435, 1997

      7 E. Keogh, "Locally adaptive dimensionality reduction for indexing large time series databases" ACM 151-162, 2001

      8 M. Vlachos, "Indexing multi-dimensional time-series with support for multiple distance measures" ACM 216-225, 2003

      9 E. Keogh, "Indexing large human-motion databases" VLDB Endowment 780-791, 2004

      10 S. Salvador, "Fastdtw: Toward accurate dynamic time warping in linear time and space" 2004

      1 H. T. Shen, "Towards effective indexing for very large video sequence database" ACM 730-741, 2005

      2 Hyungsoo Jung, "SMoFinder: A System for Querying Complex Human Motions Using a Kinematic Approach" 640-643, 2008

      3 L. Chen, "Robust and fast similarity search for moving object trajectories" ACM 491-502, 2005

      4 A. Guttman, "R-trees: a dynamic index structure for spatial searching" 47-57, 1984

      5 Y. Chen, "Querying complex spatio-temporal sequences in human motion databases" 90-99, 2008

      6 P. Ciaccia, "M-tree: An efficient access method for similarity search in metric spaces" 426-435, 1997

      7 E. Keogh, "Locally adaptive dimensionality reduction for indexing large time series databases" ACM 151-162, 2001

      8 M. Vlachos, "Indexing multi-dimensional time-series with support for multiple distance measures" ACM 216-225, 2003

      9 E. Keogh, "Indexing large human-motion databases" VLDB Endowment 780-791, 2004

      10 S. Salvador, "Fastdtw: Toward accurate dynamic time warping in linear time and space" 2004

      11 C. Faloutsos, "Fast subsequence matching in time-series databases" ACM 419-429, 1994

      12 K. pong Chan, "Efficient time series matching by wavelets" 126-133, 1999

      13 R. Agrawal, "Efficient similarity search in sequence databases" Springer-Verlag 69-84, 1993

      14 M. Müller, "Efficient content-based retrieval of motion capture data" 24 (24): 677-685, 2005

      15 P. N. Yianilos, "Data structures and algorithms for nearest neighbor search in general metric spaces" Society for Industrial and Applied Mathematics 311-321, 1993

      16 "CMU graphics lab motion capture database"

      17 L. Kovar, "Automated extraction and parameterization of motions in large data sets" 23 (23): 559-568, 2004

      18 Acclaim, "ASF/AMC file specifications"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2013-11-05 학술지명변경 외국어명 : Journal of Korean Society for Internet Information -> Journal of Internet Computing and Services KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.55 0.55 0.63
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.64 0.6 0.85 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼