RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      The Distinct Impact Dimensions of the Prestige Indices in Author Citation Networks = 저자 인용 네트워크에서 명망성 지표의 차별된 영향력 측정기준에 관한 연구

      한글로보기

      https://www.riss.kr/link?id=A105459946

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study aims at proposing three prestige indices-closeness prestige, input domain, and proximity prestige- as useful measures for the impact of a particular node in citation networks. It compares these prestige indices with other impact indices as it is still unknown what dimensions of impact these indices actually measure. The prestige indices enable us to distinguish the most prominent actors in a directed network, similar to the centrality indices in undirected networks. Correlation analysis and principal component analysis were conducted on the author citation network to identify the differentiated implications of the three prestige indices from the existing impact indices. We selected simple citation counting, h-index, PageRank, and the three kinds of centrality indices which assume undirected networks as the existing impact measures for comparison with the three prestige indices. The results indicate that these prestige indices demonstrate distinct impact dimension from the other impact indices. The prestige indices reflect indirect impact while the others direct impact.
      번역하기

      This study aims at proposing three prestige indices-closeness prestige, input domain, and proximity prestige- as useful measures for the impact of a particular node in citation networks. It compares these prestige indices with other impact indices as ...

      This study aims at proposing three prestige indices-closeness prestige, input domain, and proximity prestige- as useful measures for the impact of a particular node in citation networks. It compares these prestige indices with other impact indices as it is still unknown what dimensions of impact these indices actually measure. The prestige indices enable us to distinguish the most prominent actors in a directed network, similar to the centrality indices in undirected networks. Correlation analysis and principal component analysis were conducted on the author citation network to identify the differentiated implications of the three prestige indices from the existing impact indices. We selected simple citation counting, h-index, PageRank, and the three kinds of centrality indices which assume undirected networks as the existing impact measures for comparison with the three prestige indices. The results indicate that these prestige indices demonstrate distinct impact dimension from the other impact indices. The prestige indices reflect indirect impact while the others direct impact.

      더보기

      참고문헌 (Reference)

      1 이재윤, "계량서지적 네트워크 분석을 위한 중심성 척도에 관한 연구" 한국문헌정보학회 40 (40): 191-214, 2006

      2 Musial, K., "User position measures in social networks" 6 : 2009

      3 Leydesdorff, L., "Theories of citation?" 43 (43): 5-25, 1998

      4 Romero, D. M., "The directed closure process in hybrid social-information networks, with an analysis of link formation on Twitter" 138-145, 2010

      5 Wasserman, S., "Social network analysis: Methods and applications" Cambridge University Press 1994

      6 Sohn, Dong-Won, "Social Network Analysis" Kyoungmoon 2002

      7 Yan, E. J., "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other" 63 (63): 1313-1326, 2012

      8 Litvak, N., "Probabilistic relation between In-Degree and PageRank" 2006

      9 Ding, Y., "Popular and/or prestigious? Measures of scholarly esteem" 47 (47): 80-96, 2011

      10 Mrvar, A., "Pajek and Pajek-XXL: Programs for analysis and visualization of very large networks reference manual list of commands with short explanation version 4.0"

      1 이재윤, "계량서지적 네트워크 분석을 위한 중심성 척도에 관한 연구" 한국문헌정보학회 40 (40): 191-214, 2006

      2 Musial, K., "User position measures in social networks" 6 : 2009

      3 Leydesdorff, L., "Theories of citation?" 43 (43): 5-25, 1998

      4 Romero, D. M., "The directed closure process in hybrid social-information networks, with an analysis of link formation on Twitter" 138-145, 2010

      5 Wasserman, S., "Social network analysis: Methods and applications" Cambridge University Press 1994

      6 Sohn, Dong-Won, "Social Network Analysis" Kyoungmoon 2002

      7 Yan, E. J., "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other" 63 (63): 1313-1326, 2012

      8 Litvak, N., "Probabilistic relation between In-Degree and PageRank" 2006

      9 Ding, Y., "Popular and/or prestigious? Measures of scholarly esteem" 47 (47): 80-96, 2011

      10 Mrvar, A., "Pajek and Pajek-XXL: Programs for analysis and visualization of very large networks reference manual list of commands with short explanation version 4.0"

      11 Yan, E. J., "P-Rank: An indicator measuring prestige in heterogeneous scholarly networks" 62 (62): 467-477, 2011

      12 Bollen, J., "Journal status" 69 (69): 669-687, 2006

      13 Redner, S., "How popular is your paper? An empirical study of the citation distribution" 4 (4): 131-134, 1998

      14 De Nooy, W., "Exploratory social network analysis with Pajek (27 vols.)" Cambridge University Press 2011

      15 Pinski, G., "Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics" 12 (12): 297-312, 1976

      16 Erman, N., "Citation analysis for e-government research" 244-253, 2009

      17 Fortunato, S., "Approximating PageRank from in-degree" 4936 : 59-71, 2008

      18 Yan, E. J., "Applying centrality measures to impact analysis: A coauthorship network analysis" 60 (60): 2107-2118, 2009

      19 Ding, Y., "Applying Weighted PageRank to Author Citation Networks" 62 (62): 236-245, 2011

      20 Knoke, D., "Applied network analysis:A methodological introduction" Sage 195-222, 1983

      21 González-Pereira, B., "A new approach to the metric of journals’ scientific prestige: The SJR indicator" 4 (4): 379-391, 2010

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.21 1.21 1.48
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.29 1.2 2.027 0.28
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼