RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Carbon nanosheets coated on zirconium oxide nanoplate nanocomposite for Zn2+ ion adsorption and reuse of spent adsorbent for fingerprint detection

      한글로보기

      https://www.riss.kr/link?id=A108531433

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This work highlights a novel method for the synthesis of carbon nanosheets coated on zirconium oxide nanoplate (CNS/ZrO2NPs) nanocomposite that is used as an adsorbent for Zn2+ ions removal from water. CNS/ZrO2NPs nanocomposite was prepared using CNS ...

      This work highlights a novel method for the synthesis of carbon nanosheets coated on zirconium oxide nanoplate (CNS/ZrO2NPs) nanocomposite that is used as an adsorbent for Zn2+ ions removal from water. CNS/ZrO2NPs nanocomposite was prepared using CNS and ZrO2NPs by a hydrothermal method. This nanocomposite proved to be a good adsorbent for Zn2+ ion uptake at maximum pH of 8 and dosage of 20 mg. The Temkin isotherm model represented the adsorption process followed by the Langmuir isotherm with a maximum adsorption capacity of 606.06 mg g−1, above other adsorbents that have been reported for the removal of zinc ions. The adsorption kinetic process was best described by the pseudo-second-order kinetics, and it was found that the adsorption followed a chemisorption process. The thermodynamic parameters, such as enthalpy (ΔH), Gibbs free energy (ΔG), and entropy (ΔS), revealed that the adsorption was exothermic, spontaneous, and not random during the process. This metal-loaded adsorbent Zn2+-CNS/ZrO2NPs nanocomposite furthermore was reused in latent fingerprint detection and did demonstrate good selectivity and sensitivity on different surfaces by two donors. Therefore, Zn2+-CNS/ZrO2NPs nanocomposite may be reutilized as a good fingerprint marking agent in latent fingerprint (LFP) identification to circumvent secondary environmental pollution by the release of a spent adsorbent.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼