1 Y. Xu, "α-Fe2O3 nanostructures with different morphologies: additive-free synthesis, magnetic properties, and visible light photocatalytic properties" 92 : 321-324, 2013
2 Y. Piao, "Wrap – Bake – Peel Process for Nanostructural Transformation from β -FeOOH nanorods to biocompatible iron oxide nanocapsules" 7 : 242-247, 2008
3 R. Das, "Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia" 2016
4 B. Pacakova, "The internal structure of magnetic nanoparticles determines the magnetic response" 9 (9): 5129-5140, 2017
5 T. P. Raming, "The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles" 249 (249): 346-350, 2002
6 S. Mitra, "Temperature dependence of magnetic properties of NiFe2O4 nanoparticles embeded in SiO2 Matrix" 306 (306): 254-259, 2006
7 H. Itoh, "Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles" 265 (265): 283-295, 2003
8 A. S. Teja, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles" 55 (55): 22-45, 2009
9 M. Tadić, "Synthesis" 509 (509): 7639-7644, 2011
10 R. N. Bhowmik, "Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3(Hematite) nanograins" 107 : 5-, 2010
1 Y. Xu, "α-Fe2O3 nanostructures with different morphologies: additive-free synthesis, magnetic properties, and visible light photocatalytic properties" 92 : 321-324, 2013
2 Y. Piao, "Wrap – Bake – Peel Process for Nanostructural Transformation from β -FeOOH nanorods to biocompatible iron oxide nanocapsules" 7 : 242-247, 2008
3 R. Das, "Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia" 2016
4 B. Pacakova, "The internal structure of magnetic nanoparticles determines the magnetic response" 9 (9): 5129-5140, 2017
5 T. P. Raming, "The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles" 249 (249): 346-350, 2002
6 S. Mitra, "Temperature dependence of magnetic properties of NiFe2O4 nanoparticles embeded in SiO2 Matrix" 306 (306): 254-259, 2006
7 H. Itoh, "Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles" 265 (265): 283-295, 2003
8 A. S. Teja, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles" 55 (55): 22-45, 2009
9 M. Tadić, "Synthesis" 509 (509): 7639-7644, 2011
10 R. N. Bhowmik, "Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3(Hematite) nanograins" 107 : 5-, 2010
11 C. P. Bean, "Superparamagnetism" 30 (30): S120-S129, 1959
12 Z. Hiroi, "Spin-1/2 Kagome Compounds:Volborthite vs Herbertsmithite" 2009
13 B. Jeon, "Sorption Kinetics of Fe ( II ), Zn ( II ), Co ( II ), Ni ( II ), Cd ( II ), and Fe ( II )/ Me ( II ) onto Hematite" 37 : 4135-4142, 2003
14 S. Tong, "Size-dependent heating of magnetic iron oxide nanoparticles" 11 (11): 6808-6816, 2017
15 S. Oyarzún, "Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface" 5 : 16-21, 2015
16 F. Bodker, "Size dependence of the properties of hematite nanoparticles" 52 (52): 217-223, 2000
17 X. -L. Fang, "Single-crystal-like hematite colloidal nanocrystal clusters : synthesis and applications in gas sensors, photocatalysis and water treatment †" 19 : 6154-6160, 2009
18 J. Carrey, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization" 109 : 083921-, 2011
19 S. F. Kurtoğlu, "Red mud as an efficient, stable, and cost-free catalyst for CO x -free hydrogen production from ammonia" 2016
20 N. Singh, "Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)" 1 : 5358-, 2010
21 C. L. Dennis, "Physics of heat generation using magnetic nanoparticles for hyperthermia" 29 (29): 715-729, 2013
22 R. V. Jagadeesh, "Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines" 342 : 1583-1587, 2013
23 Binns, C., "Nanomagnetism:Fundamentals and Applications" Frontiers of Nanoscience 217-258, 2014
24 G. J. Muench, "Magnetic properties of monodispersed submicromic Α-Fe2O3 particles" 52 (52): 2493-2495, 1981
25 F. Bødker, "Magnetic properties of hematite nanoparticles" 61 (61): 6826-6838, 2000
26 B. Issa, "Magnetic nanoparticles: surface effects and properties related to biomedicine applications" 14 (14): 21266-21305, 2013
27 R. Prozorov, "Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles" 59 (59): 6956-6965, 1999
28 R. A. Borzi, "Magnetic interactions in hematite small particles obtained by ball milling" 205 (205): 234-240, 1999
29 R. Hergt, "Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia" 270 : 345-357, 2004
30 M. A. Gonzalez-fernandez, "Journal of solid state chemistry magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties s-Verg E" 182 : 2779-2784, 2009
31 R. R. Shah, "Journal of magnetism and magnetic materials impact of magnetic fi eld parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia" 387 : 96-106, 2015
32 A. E. Deatsch, "Journal of magnetism and magnetic materials heating efficiency in magnetic nanoparticle hyperthermia" 354 : 163-172, 2014
33 A. W. Lounsbury, "Journal of colloid and interface science nano-hematite facets" 537 : 465-474, 2019
34 Cullity, B. D., "Introduction to Magnetic Materials - Cullity"
35 F. Arteaga-Cardona, "Improving the magnetic heating by disaggregating nanoparticles" 663 : 636-644, 2016
36 J. Lian, "Hematite (Fe2O3)with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties" 3 (3): 3749-3761, 2009
37 J. Lian, "Hematite ( a-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties" 3 (3): 3749-3761, 2009
38 A.E. Deatsch, "Heating EffiCiency in Magnetic Nanoparticle Hyperthermia" 354 : 163-172, 2014
39 Z. S. Fishman, "Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2to CO Conversion: via the reverse water-gas shift reaction" 9 (9): 12984-12995, 2017
40 X. Batlle, "Finite-size effects in fine particles: magnetic and transport properties" 35 : 6-, 2002
41 B. Tang, "Facile Route to α-FeOOH and α-Fe 2 O 3 Nanorods and Magnetic Property of α-Fe 2 O 3 Nanorods" 45 (45): 5196-5200, 2006
42 N. K. Chaudhari, "Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media" 11 (11): 2264-, 2009
43 P.S. Sidhu, "Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids" 29 (29): 269-276, 1981
44 K. Supattarasakda, "Control of hematite nanoparticle size and shape by the chemical precipitation method" 2013 (2013): 353-359, 2013
45 T. K. Jain, "Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats" 5 : 2-, 2008
46 V. A. Grover, "ADSORPTION AND DESORPTION OF BIVALENT METALS TO HEMATITE NANOPARTICLES" 31 (31): 86-92, 2012