RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Nano-structural effects on Hematite (α-Fe2O3) nanoparticle radiofrequency heating

      한글로보기

      https://www.riss.kr/link?id=A108036132

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Nano-sized hematite (α-Fe 2 O 3 ) is not well suited for magnetic heating via an alternating magnetic field (AMF) because it is not superparamagnetic—at its best, it is weakly ferromagnetic. However, manipulating the magnetic properties of nano-sized hematite (i.e., magnetic saturation (Ms), magnetic remanence (Mr), and coercivity (Hc)) can make them useful for nanomedicine (i.e., magnetic hyperthermia) and nanoelectronics (i.e., data storage). Herein we study the effects of size, shape, and crystallinity on hematite nanoparticles to experimentally determine the most crucial variable leading to enhancing the radio frequency (RF) heating properties. We present the synthesis, characterization, and magnetic behavior to determine the structure–property relationship between hematite nano-magnetism and RF heating. Increasing particle shape anisotropy had the largest effect on the specific adsorption rate (SAR) producing SAR values more than 6 × greater than the nanospheres (i.e., 45.6 ± 3 W/g of α-Fe 2 O 3 nanorods vs. 6.89 W/g of α-Fe 2 O 3 nanospheres), indicating α-Fe 2 O 3 nanorods can be useful for magnetic hyperthermia.
      번역하기

      Nano-sized hematite (α-Fe 2 O 3 ) is not well suited for magnetic heating via an alternating magnetic field (AMF) because it is not superparamagnetic—at its best, it is weakly ferromagnetic. However, manipulating the magnetic properties of nano-siz...

      Nano-sized hematite (α-Fe 2 O 3 ) is not well suited for magnetic heating via an alternating magnetic field (AMF) because it is not superparamagnetic—at its best, it is weakly ferromagnetic. However, manipulating the magnetic properties of nano-sized hematite (i.e., magnetic saturation (Ms), magnetic remanence (Mr), and coercivity (Hc)) can make them useful for nanomedicine (i.e., magnetic hyperthermia) and nanoelectronics (i.e., data storage). Herein we study the effects of size, shape, and crystallinity on hematite nanoparticles to experimentally determine the most crucial variable leading to enhancing the radio frequency (RF) heating properties. We present the synthesis, characterization, and magnetic behavior to determine the structure–property relationship between hematite nano-magnetism and RF heating. Increasing particle shape anisotropy had the largest effect on the specific adsorption rate (SAR) producing SAR values more than 6 × greater than the nanospheres (i.e., 45.6 ± 3 W/g of α-Fe 2 O 3 nanorods vs. 6.89 W/g of α-Fe 2 O 3 nanospheres), indicating α-Fe 2 O 3 nanorods can be useful for magnetic hyperthermia.

      더보기

      참고문헌 (Reference)

      1 Y. Xu, "α-Fe2O3 nanostructures with different morphologies: additive-free synthesis, magnetic properties, and visible light photocatalytic properties" 92 : 321-324, 2013

      2 Y. Piao, "Wrap – Bake – Peel Process for Nanostructural Transformation from β -FeOOH nanorods to biocompatible iron oxide nanocapsules" 7 : 242-247, 2008

      3 R. Das, "Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia" 2016

      4 B. Pacakova, "The internal structure of magnetic nanoparticles determines the magnetic response" 9 (9): 5129-5140, 2017

      5 T. P. Raming, "The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles" 249 (249): 346-350, 2002

      6 S. Mitra, "Temperature dependence of magnetic properties of NiFe2O4 nanoparticles embeded in SiO2 Matrix" 306 (306): 254-259, 2006

      7 H. Itoh, "Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles" 265 (265): 283-295, 2003

      8 A. S. Teja, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles" 55 (55): 22-45, 2009

      9 M. Tadić, "Synthesis" 509 (509): 7639-7644, 2011

      10 R. N. Bhowmik, "Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3(Hematite) nanograins" 107 : 5-, 2010

      1 Y. Xu, "α-Fe2O3 nanostructures with different morphologies: additive-free synthesis, magnetic properties, and visible light photocatalytic properties" 92 : 321-324, 2013

      2 Y. Piao, "Wrap – Bake – Peel Process for Nanostructural Transformation from β -FeOOH nanorods to biocompatible iron oxide nanocapsules" 7 : 242-247, 2008

      3 R. Das, "Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia" 2016

      4 B. Pacakova, "The internal structure of magnetic nanoparticles determines the magnetic response" 9 (9): 5129-5140, 2017

      5 T. P. Raming, "The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles" 249 (249): 346-350, 2002

      6 S. Mitra, "Temperature dependence of magnetic properties of NiFe2O4 nanoparticles embeded in SiO2 Matrix" 306 (306): 254-259, 2006

      7 H. Itoh, "Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles" 265 (265): 283-295, 2003

      8 A. S. Teja, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles" 55 (55): 22-45, 2009

      9 M. Tadić, "Synthesis" 509 (509): 7639-7644, 2011

      10 R. N. Bhowmik, "Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3(Hematite) nanograins" 107 : 5-, 2010

      11 C. P. Bean, "Superparamagnetism" 30 (30): S120-S129, 1959

      12 Z. Hiroi, "Spin-1/2 Kagome Compounds:Volborthite vs Herbertsmithite" 2009

      13 B. Jeon, "Sorption Kinetics of Fe ( II ), Zn ( II ), Co ( II ), Ni ( II ), Cd ( II ), and Fe ( II )/ Me ( II ) onto Hematite" 37 : 4135-4142, 2003

      14 S. Tong, "Size-dependent heating of magnetic iron oxide nanoparticles" 11 (11): 6808-6816, 2017

      15 S. Oyarzún, "Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface" 5 : 16-21, 2015

      16 F. Bodker, "Size dependence of the properties of hematite nanoparticles" 52 (52): 217-223, 2000

      17 X. -L. Fang, "Single-crystal-like hematite colloidal nanocrystal clusters : synthesis and applications in gas sensors, photocatalysis and water treatment †" 19 : 6154-6160, 2009

      18 J. Carrey, "Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization" 109 : 083921-, 2011

      19 S. F. Kurtoğlu, "Red mud as an efficient, stable, and cost-free catalyst for CO x -free hydrogen production from ammonia" 2016

      20 N. Singh, "Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)" 1 : 5358-, 2010

      21 C. L. Dennis, "Physics of heat generation using magnetic nanoparticles for hyperthermia" 29 (29): 715-729, 2013

      22 R. V. Jagadeesh, "Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines" 342 : 1583-1587, 2013

      23 Binns, C., "Nanomagnetism:Fundamentals and Applications" Frontiers of Nanoscience 217-258, 2014

      24 G. J. Muench, "Magnetic properties of monodispersed submicromic Α-Fe2O3 particles" 52 (52): 2493-2495, 1981

      25 F. Bødker, "Magnetic properties of hematite nanoparticles" 61 (61): 6826-6838, 2000

      26 B. Issa, "Magnetic nanoparticles: surface effects and properties related to biomedicine applications" 14 (14): 21266-21305, 2013

      27 R. Prozorov, "Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles" 59 (59): 6956-6965, 1999

      28 R. A. Borzi, "Magnetic interactions in hematite small particles obtained by ball milling" 205 (205): 234-240, 1999

      29 R. Hergt, "Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia" 270 : 345-357, 2004

      30 M. A. Gonzalez-fernandez, "Journal of solid state chemistry magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties s-Verg E" 182 : 2779-2784, 2009

      31 R. R. Shah, "Journal of magnetism and magnetic materials impact of magnetic fi eld parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia" 387 : 96-106, 2015

      32 A. E. Deatsch, "Journal of magnetism and magnetic materials heating efficiency in magnetic nanoparticle hyperthermia" 354 : 163-172, 2014

      33 A. W. Lounsbury, "Journal of colloid and interface science nano-hematite facets" 537 : 465-474, 2019

      34 Cullity, B. D., "Introduction to Magnetic Materials - Cullity"

      35 F. Arteaga-Cardona, "Improving the magnetic heating by disaggregating nanoparticles" 663 : 636-644, 2016

      36 J. Lian, "Hematite (Fe2O3)with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties" 3 (3): 3749-3761, 2009

      37 J. Lian, "Hematite ( a-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties" 3 (3): 3749-3761, 2009

      38 A.E. Deatsch, "Heating EffiCiency in Magnetic Nanoparticle Hyperthermia" 354 : 163-172, 2014

      39 Z. S. Fishman, "Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2to CO Conversion: via the reverse water-gas shift reaction" 9 (9): 12984-12995, 2017

      40 X. Batlle, "Finite-size effects in fine particles: magnetic and transport properties" 35 : 6-, 2002

      41 B. Tang, "Facile Route to α-FeOOH and α-Fe 2 O 3 Nanorods and Magnetic Property of α-Fe 2 O 3 Nanorods" 45 (45): 5196-5200, 2006

      42 N. K. Chaudhari, "Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media" 11 (11): 2264-, 2009

      43 P.S. Sidhu, "Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids" 29 (29): 269-276, 1981

      44 K. Supattarasakda, "Control of hematite nanoparticle size and shape by the chemical precipitation method" 2013 (2013): 353-359, 2013

      45 T. K. Jain, "Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats" 5 : 2-, 2008

      46 V. A. Grover, "ADSORPTION AND DESORPTION OF BIVALENT METALS TO HEMATITE NANOPARTICLES" 31 (31): 86-92, 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 선정 (해외등재 학술지 평가) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼