RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      대용량 분류에서 SVM과 신경망의 성능 비교 = Performance comparison of SVM and neural networks for large-set classification problems

      한글로보기

      https://www.riss.kr/link?id=A101435006

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      이 논문은 대용량 분류 문제를 위한 모듈러 신경망(modular feedforward MLP)과 SVM(Support Vector Machine)의 성능을 비교 분석하였다. 전반적으로 SVM이 상당한 성능 차이로 우수함을 확인하였다. 또한 부류 수가 많아짐에 따라 SVM이 신경망보다 완만하게 성능 저하가 있음도 확인하였다. 또한 기각에 따른 정인식률 추이를 분석하였고, 대용량 분류에 적합한 SVM 파라메터(kernel 함수와 관련 변수들)를 도출하였다.
      번역하기

      이 논문은 대용량 분류 문제를 위한 모듈러 신경망(modular feedforward MLP)과 SVM(Support Vector Machine)의 성능을 비교 분석하였다. 전반적으로 SVM이 상당한 성능 차이로 우수함을 확인하였다. 또한 부...

      이 논문은 대용량 분류 문제를 위한 모듈러 신경망(modular feedforward MLP)과 SVM(Support Vector Machine)의 성능을 비교 분석하였다. 전반적으로 SVM이 상당한 성능 차이로 우수함을 확인하였다. 또한 부류 수가 많아짐에 따라 SVM이 신경망보다 완만하게 성능 저하가 있음도 확인하였다. 또한 기각에 따른 정인식률 추이를 분석하였고, 대용량 분류에 적합한 SVM 파라메터(kernel 함수와 관련 변수들)를 도출하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, we analyzed and compared the performances of modular FFMLP(feedforward multilayer perceptron) and SVUT(Support Vector Machine) for the large-set classification problems. Overall, SVM dominated modular FFMLP in the correct recognition rate and other aspects Additionally, the recognition rate of SVM degraded more slowly than neural network as the number of classes increases. The trend of the recognition rates depending on the rejection rate has been analyzed. The parameter set of SVM(kernel functions and related variables) has been identified for the large-set classification problems.
      번역하기

      In this paper, we analyzed and compared the performances of modular FFMLP(feedforward multilayer perceptron) and SVUT(Support Vector Machine) for the large-set classification problems. Overall, SVM dominated modular FFMLP in the correct recognition ra...

      In this paper, we analyzed and compared the performances of modular FFMLP(feedforward multilayer perceptron) and SVUT(Support Vector Machine) for the large-set classification problems. Overall, SVM dominated modular FFMLP in the correct recognition rate and other aspects Additionally, the recognition rate of SVM degraded more slowly than neural network as the number of classes increases. The trend of the recognition rates depending on the rejection rate has been analyzed. The parameter set of SVM(kernel functions and related variables) has been identified for the large-set classification problems.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼