RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Deformation path and springback behavior in double-curved bending at high temperature

      한글로보기

      https://www.riss.kr/link?id=A106343814

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      In this work, integrated double-curved bending–sizing–unloading is simulated for a Ti6Al4V titanium alloy sheet. Bending radii R30 mm × R30 mm and R30 mm × R15 mm are used in the bending tests at 700 °C and 750 °C, respectively. A holding time of 0–600 s is applied to explore the effect of sizing time on forming accuracy. Similar experimental tests are performed for comparison with the finite element analysis results. Results show that bending behavior varies remarkably with the bidirectional radii. As for equal bidirectional curvature, bending along each direction occurs simultaneously. Given that bidirectional radii are different, the sheet consecutively experiences single small-, single large-, and double-curved bending. The deformation path results in nonuniform plastic strain distribution. The springback amount increases from the center to the marginal middle zone. Sizing at 700 °C or 750 °C in 600 s or 180–600 s can remarkably reduce the springback amount, respectively. The springback prediction via finite element method is consistent with that of the experiment.
      번역하기

      In this work, integrated double-curved bending–sizing–unloading is simulated for a Ti6Al4V titanium alloy sheet. Bending radii R30 mm × R30 mm and R30 mm × R15 mm are used in the bending tests at 700 °C and 750 °C, respectively. A holding time...

      In this work, integrated double-curved bending–sizing–unloading is simulated for a Ti6Al4V titanium alloy sheet. Bending radii R30 mm × R30 mm and R30 mm × R15 mm are used in the bending tests at 700 °C and 750 °C, respectively. A holding time of 0–600 s is applied to explore the effect of sizing time on forming accuracy. Similar experimental tests are performed for comparison with the finite element analysis results. Results show that bending behavior varies remarkably with the bidirectional radii. As for equal bidirectional curvature, bending along each direction occurs simultaneously. Given that bidirectional radii are different, the sheet consecutively experiences single small-, single large-, and double-curved bending. The deformation path results in nonuniform plastic strain distribution. The springback amount increases from the center to the marginal middle zone. Sizing at 700 °C or 750 °C in 600 s or 180–600 s can remarkably reduce the springback amount, respectively. The springback prediction via finite element method is consistent with that of the experiment.

      더보기

      참고문헌 (Reference)

      1 N. K. Sinha, "Viscous and delayed-elastic deformation during primary creep-using strain relaxation and recovery test" 48 : 1507-1512, 2003

      2 E. -L. Odenberger, "Tool development based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy" 211 (211): 1324-1335, 2011

      3 P. Xue, "Theoretical prediction of the springback of metal sheets after a double-curvature forming operation" 89-90 : 65-71, 1999

      4 Xiaohan Tang, "Strain rate dependent behaviors of a hot isotropically processed Ti-6Al-4V: Mechanisms and material model" 대한기계학회 30 (30): 661-665, 2016

      5 T. X. Yu, "Stamping rectangular plates into doubly-curved dies" 198 (198): 709-125, 1984

      6 J. Liao, "Springback reduction of a blade part using measuring based compensation methodology" 81 (81): 749-752, 2010

      7 Y. J. Liu, "Research on the process of flexible blank holder in multi-point forming for spherical surface parts" 89 : 2315-2322, 2017

      8 P. Liu, "Relationship between constant-load creep, decreasing-load creep and stress relaxation of titanium alloy" 638 : 106-113, 2015

      9 W. S. Lee, "Plastic deformation and fracture behaviour of Ti-6Al-4Valloy loaded with high strain rate under various temperatures" 241 : 48-59, 1998

      10 F. Barlat, "Plane stress yield function for aluminum alloy sheets-Part 1 : Theory" 19 : 1297-1319, 2003

      1 N. K. Sinha, "Viscous and delayed-elastic deformation during primary creep-using strain relaxation and recovery test" 48 : 1507-1512, 2003

      2 E. -L. Odenberger, "Tool development based on modelling and simulation of hot sheet metal forming of Ti–6Al–4V titanium alloy" 211 (211): 1324-1335, 2011

      3 P. Xue, "Theoretical prediction of the springback of metal sheets after a double-curvature forming operation" 89-90 : 65-71, 1999

      4 Xiaohan Tang, "Strain rate dependent behaviors of a hot isotropically processed Ti-6Al-4V: Mechanisms and material model" 대한기계학회 30 (30): 661-665, 2016

      5 T. X. Yu, "Stamping rectangular plates into doubly-curved dies" 198 (198): 709-125, 1984

      6 J. Liao, "Springback reduction of a blade part using measuring based compensation methodology" 81 (81): 749-752, 2010

      7 Y. J. Liu, "Research on the process of flexible blank holder in multi-point forming for spherical surface parts" 89 : 2315-2322, 2017

      8 P. Liu, "Relationship between constant-load creep, decreasing-load creep and stress relaxation of titanium alloy" 638 : 106-113, 2015

      9 W. S. Lee, "Plastic deformation and fracture behaviour of Ti-6Al-4Valloy loaded with high strain rate under various temperatures" 241 : 48-59, 1998

      10 F. Barlat, "Plane stress yield function for aluminum alloy sheets-Part 1 : Theory" 19 : 1297-1319, 2003

      11 D. H. He, "Optimization on springback reduction in cold stretch forming of titanium alloy aircraft ski" 20 : 2350-2357, 2010

      12 Q. A. Tai, "On the measurement of friction coefficient of Ti-6Al-4V titanium alloy utilizing the hot compression test of ring and FE simulation" 6 : 21-31, 2011

      13 N. Asnafi, "On springback of double-curved autobody panels" 43 : 5-37, 2001

      14 D. Guines, "Numerical modeling of integrally stiffened structures forming from creep age forming technique" 1 : 1071-1074, 2008

      15 김우곤, "Non-linear modeling of stress relaxation curves for Grade 91 steel" 대한기계학회 32 (32): 1143-1151, 2018

      16 R. Boyer, "Materials Properties Handbook: Titanium Alloys, Technical note 5A, Superplastic Forming of Titanium Alloys"

      17 R. Boyer, "Materials Properties Handbook: Titanium Alloys"

      18 심도식, "Investigation of Tension Force in Stretch Forming of Doubly Curved Aluminum Alloy (Al5083) Sheet" 한국정밀공학회 17 (17): 433-444, 2016

      19 M. H. Parsa, "Investigating spring back phenomena in double curved sheet metals forming" 41 : 326-337, 2012

      20 K. Heung, "FEM-based optimum design of multi-stage deep drawing process of molybdenum sheet" 184 (184): 354-362, 2007

      21 Y. Yan, "FEM modelling for press bend forming of doubly curved integrally stiffened aircraft panel" 22 : s39-, 2012

      22 U. Borah, "Estimation of springback in doublecurvature forming of plates : Experimental evaluation and process modeling" 50 : 704-718, 2008

      23 E. N. Chumachenko, "Development of computer simulation of industrial superplastic sheet forming" 499 : 342-346, 2009

      24 J. Zhang, "Creep age forming of 2124 aluminum alloy with single/double curvature" 23 : 1922-1929, 2013

      25 W. L. Hu, "An experimental study of the roll-bending of double-curvature workpieces" 55 : 28-32, 1995

      26 L. Li, "An experimental study of the lubrication behavior of graphite in hot compression tests of Ti-6Al-4V alloy" 112 (112): 1-5, 2001

      27 J. Liao, "A new springback compensation method for sheet metal bending based on curvature correction" v97-101 : 130-134, 2010

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼