COVID-19 확산은 인명 피해와 더불어 이동 제한, 재택근무, 디지털 전환의 촉진과 같이 일상생활에도 큰 영향을 주었다. 이에 본 연구는 국내 소비와 검색 활동을 통해서 COVID-19의 영향을 살펴...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107826141
2021
Korean
KCI등재
학술저널
597-623(27쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
COVID-19 확산은 인명 피해와 더불어 이동 제한, 재택근무, 디지털 전환의 촉진과 같이 일상생활에도 큰 영향을 주었다. 이에 본 연구는 국내 소비와 검색 활동을 통해서 COVID-19의 영향을 살펴...
COVID-19 확산은 인명 피해와 더불어 이동 제한, 재택근무, 디지털 전환의 촉진과 같이 일상생활에도 큰 영향을 주었다. 이에 본 연구는 국내 소비와 검색 활동을 통해서 COVID-19의 영향을 살펴보았고, 나아가 소비와 검색의 관계를 탐색했다. 구체적으로 본 연구는 국내 COVID-19 확진자와 네이버 검색 그리고 6대 업종 및 ICT 분야의 1년간 신용카드 사용 건수의 관계를 통계적으로 분석했다. 또한 카드 사용 건수를 설명할 수 있는 검색어를 찾아 소비 활동과 비교했다. 연구 결과에 따르면, 신규 확진자와 검색은 통계적으로 유의미한 관계가 존재하며, 검색이 선행하는 것으로 나타났다. COVID-19에 따른 여파는 취미·오락, 관광, 레저 업종에서 평균 이상으로 나타났으며, 생활 업종은 상대적으로 피해가 적었고, ICT 분야는 거의 여파가 없었던 것으로 밝혀졌다. 또한, 소비 활동을 설명할 수 있는 검색어가 존재했으며, 이를 활용해 소비 활동의 변화를 빠르게 관측할 수 있었다. 본 연구결과는 COVID-19이 사회경제적으로 미친 영향을 객관적으로 제시하고 검색 활동을 통해 업황과 정책 효과의 신속한 관찰 가능성을 제시했다는 측면에서 의의가 있다.
다국어 초록 (Multilingual Abstract)
The pandemic of COVID-19 has had a huge impact on daily life, such as restricting mobility, working from home, and promoting digital transformation. Therefore, this study examined the impact of COVID-19 through domestic consumption and search activiti...
The pandemic of COVID-19 has had a huge impact on daily life, such as restricting mobility, working from home, and promoting digital transformation. Therefore, this study examined the impact of COVID-19 through domestic consumption and search activities, and further explored the relationship between consumption and search. Specifically, this study statistically analyzed the relationship between Korean COVID-19 confirmed cases, Naver search, and the number of card use cases in one year in 6 major industries and ICT fields. In addition, search terms that can explain the number of cards used were compared with consumption activities. According to the results of the study, there was a statistically significant relationship between the search and the new confirmed patient, and the search was preceded. The aftermath of COVID-19 was above average in the hobbies/entertainment, tourism, and leisure industries, with relatively little damage in the living sector, and almost no aftermath in the ICT sector. In addition, there was a search word that could be explained by consumption activity, and by using it, changes in consumption activity could be quickly observed.
목차 (Table of Contents)
참고문헌 (Reference)
1 질병관리청, "코로나바이러스감염증-19(COVID-19) 일일보도 자료"
2 고재경, "코로나19 위기, 기후위기 해결의 새로운 기회" 1-25, 2020
3 김학만, "코로나 19 사태 이후 사회복지정책의 변화 논의 : 체계와 구성요소를 중심으로" 한국정치사회연구소 4 (4): 63-86, 2020
4 김세완, "주택가격변동이 민간소비에 미치는 영향: 경기순환을 고려하여" 한국금융학회 22 (22): 27-51, 2008
5 한정희, "요한젠검정을 이용한 고용활동과 주택가격간의 공적분관계 분석" 통계청 11 (11): 1-23, 2006
6 이경탁, "어린이날 연휴 T맵 하루 사용자 400만 돌파...스타필드 하남 가장 많이 찾아"
7 Butler, D., "When Google Got Flu Wrong: US Outbreak Foxes a Leading Web-based Method for Tracking Seasonal Flu" 494 (494): 155-157, 2013
8 Jun, S. P., "Visualization of Brand Positioning Based on Consumer Web Search Information" 27 (27): 381-407, 2017
9 Chan, E. H., "Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance" 5 (5): e1206-, 2011
10 Carvalho, V. M., "Tracking the COVID-19 Crisis with High-resolution Transaction Data" CEPR 2020
1 질병관리청, "코로나바이러스감염증-19(COVID-19) 일일보도 자료"
2 고재경, "코로나19 위기, 기후위기 해결의 새로운 기회" 1-25, 2020
3 김학만, "코로나 19 사태 이후 사회복지정책의 변화 논의 : 체계와 구성요소를 중심으로" 한국정치사회연구소 4 (4): 63-86, 2020
4 김세완, "주택가격변동이 민간소비에 미치는 영향: 경기순환을 고려하여" 한국금융학회 22 (22): 27-51, 2008
5 한정희, "요한젠검정을 이용한 고용활동과 주택가격간의 공적분관계 분석" 통계청 11 (11): 1-23, 2006
6 이경탁, "어린이날 연휴 T맵 하루 사용자 400만 돌파...스타필드 하남 가장 많이 찾아"
7 Butler, D., "When Google Got Flu Wrong: US Outbreak Foxes a Leading Web-based Method for Tracking Seasonal Flu" 494 (494): 155-157, 2013
8 Jun, S. P., "Visualization of Brand Positioning Based on Consumer Web Search Information" 27 (27): 381-407, 2017
9 Chan, E. H., "Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance" 5 (5): e1206-, 2011
10 Carvalho, V. M., "Tracking the COVID-19 Crisis with High-resolution Transaction Data" CEPR 2020
11 Xiang, Y. T., "Timely Research Papers about COVID-19 in China" 395 (395): 684-685, 2020
12 Seifter, A., "The Utility of “Google Trends” for Epidemiological Research: Lyme Disease as an Example" 4 (4): 135-137, 2010
13 Béland, L. P., "The Short-term Economic Consequences of Covid-19: Exposure to Disease, Remote Work and Government Response" GLO 2020
14 Jun, S. P., "The Possibility of Using Search Traffic Information to Explore Consumer Product Attitudes and Forecast Consumer Preference" 86 : 237-253, 2014
15 Lazer, D., "The Parable of Google Flu: Traps in Big Data Analysis" 343 (343): 1203-1205, 2014
16 Jun, S. P., "The Impact of the Pandemic Declaration on Public Awareness and Behavior: Focusing on COVID-19 Google Searches" 166 : 120592-, 2021
17 Coffey, C., "The Effect of the COVID-19 Pandemic on Consumption and Indirect Tax in Ireland" 1-25, 2020
18 Horvath, A., "The Covid-19 Shock and Consumer Credit: Evidence from Credit Card Data" 1-55, 2020
19 Jun, S. P., "Ten Years of Research Change Using Google Trends: From the Perspective of Big Data Utilizations and Applications" 130 : 69-87, 2018
20 Ray, M., "Technology Forecasting Using Time Series Intervention Based Trend Impact Analysis for Wheat Yield Scenario in India" 118 : 128-133, 2017
21 Wang, Y., "Systematic Literature Review on the Spread of Health-related Misinformation on Social Media" 240 : 112552-, 2019
22 Johansen, S., "Statistical Analysis of Cointegration Vectors" 12 (12): 231-254, 1988
23 Granger, C. W., "Some Recent Development in a Concept of Causality" 39 (39): 199-211, 1988
24 Makin, S., "Searching for Digital Technology’s Effects on Well-being" 563 (563): S138-S140, 2018
25 Haidt, J., "Scrutinizing the Effects of Digital Technology on Mental Health" 578 : 226-227, 2020
26 Li, C., "Retrospective Analysis of the Possibility of Predicting the COVID-19 Outbreak from Internet Searches and Social Media Data, China, 2020" 25 (25): 2000199-, 2020
27 Gates, B., "Responding to Covid-19—a Once-in-a-Century Pandemic?" 382 (382): 1677-1679, 2020
28 Olson, D. R., "Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales" 9 (9): e1003256-, 2013
29 Mavragani, A., "Quantifying the UK Online Interest in Substances of the EU Watchlist for Water Monitoring: Diclofenac, Estradiol, and the Macrolide Antibiotics" 8 (8): 542-, 2016
30 Blair, R. A., "Public Health and Public Trust: Survey Evidence from the Ebola Virus Disease Epidemic in Liberia" 172 : 89-97, 2017
31 Althouse, B. M., "Prediction of Dengue Incidence Using Search Query Surveillance" 5 (5): e1258-, 2011
32 Choi, H., "Predicting the Present with Google Trends" 88 : 2-9, 2012
33 Goel, S., "Predicting Consumer Behavior with Web Search" 107 (107): 17486-17490, 2010
34 Ayyoubzadeh, S. M., "Predicting COVID-19 Incidence through Analysis of Google Trends Data in Iran: Data Mining and Deep Learning Pilot Study" 6 (6): e18828-, 2020
35 Watanabe, T., "Online Consumption during the Covid-19 Crisis: Evidence from Japan" 38 (38): 218-252, 2020
36 MacKinnon, J. G., "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration" 14 (14): 563-577, 1999
37 MacKinnon, J. G., "Numerical Distribution Functions for Unit Root and Cointegration Tests" 11 (11): 601-618, 1996
38 Pelat, C., "More Diseases Tracked by Using Google Trends" 15 (15): 1327-1328, 2009
39 Xu, H., "Monitoring and Management of Home-Quarantined Patients with COVID-19 Using a WeChat-based Telemedicine System: Retrospective Cohort Study" 22 (22): e19514-, 2020
40 Dunn, A., "Measuring the Effects of the COVID-19 Pandemic on Consumer Spending Using Card Transaction Data" US Bureau of Economic Analysis 1-22, 2020
41 Johansen, S., "Interpretation of Cointegrating Coefficients in the Cointegrated Vector Autoregressive Model" 67 (67): 93-104, 2005
42 Javaid, M., "Industry 4.0 Technologies and Their Applications in Fighting COVID-19 Pandemic" 14 (14): 419-422, 2020
43 Da, Z., "In Search of Attention" 66 (66): 1461-1499, 2011
44 Watanabe, T., "How Much Did People Refrain from Service Consumption due to the Outbreak of COVID-19?" Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo 2020
45 Askitas, N., "Google Econometrics and Unemployment Forecasting" 55 (55): 107-120, 2009
46 Jun, S. P., "Forecasting by Analogy Using the Web Search Traffic" 115 : 37-51, 2017
47 Vosen, S., "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends" 30 (30): 565-578, 2011
48 Diebold, F. X., "Elements of Forecasting" South-Western College Publication 2007
49 Iivari, N., "Digital Transformation of Everyday Life–How COVID-19 Pandemic Transformed the Basic Education of the Young Generation and Why Information Management Research Should Care?" 55 : 102183-, 2020
50 Ekholm, B., "Digital Technology Can Cut Global Emissions by 15%"
51 Ginsberg, J., "Detecting Influenza Epidemics Using Search Engine Query Data" 457 (457): 1012-1014, 2009
52 Vetter, P., "Covid-19: A Puzzle with Many Missing Pieces" 368 : m627-, 2020
53 Jun, S. P., "Consumer Information Search Behavior and Purchasing Decisions: Empirical Evidence from Korea" 107 : 97-111, 2016
54 Chowdhury, S. M., "Conflict in the Time of (Post-) Corona: Some Assessments from Behavioral Economics" 26 (26): 1-10, 2020
55 Brynjolfsson, E., "COVID-19 and Remote Work: An Early Look at US Data (No. w27344)" National Bureau of Economic Research 2020
56 Husnayain, A., "Applications of Google Search Trends for Risk Communication in Infectious Disease Management: A Case Study of COVID-19 Outbreak in Taiwan" 95 : 221-223, 2020
57 Guo, J., "Adoption of the Online Platforms Rain Classroom and WeChat for Teaching Organic Chemistry during COVID-19" 97 (97): 3246-3250, 2020
58 Jun, S. P., "A Study on the Effects of the CAFE Standard on Consumers" 91 : 148-160, 2016
59 Jun, S. P., "A Study of the Method Using Search Traffic to Analyze New Technology Adoption" 81 : 82-95, 2014
60 Webster, F., "A Critical Content Analysis of Media Reporting on Opioids: The Social Construction of an Epidemic" 244 : 112642-, 2020
61 Jun, S. P., "A Comparative Study of Hype Cycles among Actors within the Socio-technical System: With a Focus on the Case Study of Hybrid Cars" 79 (79): 1413-1430, 2012
자연과학 분야 연구 데이터 리포지터리 속성분석 : 운영수준, 주제, 유형, 활용도를 중심으로
키워드 네트워크 분석을 통해 본 기술사업화 연구 30년 (1990-2020)
지역 기술혁신역량의 심층 분석 방법론 개발 및 적용 연구 - 충북 기술 혁신역량의 분석
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | ![]() |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | ![]() |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2010-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | ![]() |
2009-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | ![]() |
2008-01-01 | 평가 | 등재후보학술지 유지 (등재후보2차) | ![]() |
2007-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | ![]() |
2006-01-01 | 평가 | 등재후보학술지 유지 (등재후보1차) | ![]() |
2005-01-01 | 평가 | 등재후보학술지 유지 (등재후보1차) | ![]() |
2003-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 1.31 | 1.31 | 1.14 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
1.21 | 1.2 | 1.278 | 0.16 |