Let g=g(A) be an affine Lie algebra of type A(sub)2ι(sup)(2)(ι>1) and W be its Weyl group. In this paper, we find $\omega$$\in$W such that $\Delta$+U{1/2($\alpha$ι+$\delta$), 1/2($\alpha$ι+3$\delta$)}⊂$\Delta$+($\omega$).
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A100986420
2001
English
SCOPUS,KCI등재,ESCI
학술저널
85-94(10쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Let g=g(A) be an affine Lie algebra of type A(sub)2ι(sup)(2)(ι>1) and W be its Weyl group. In this paper, we find $\omega$$\in$W such that $\Delta$+U{1/2($\alpha$ι+$\delta$), 1/2($\alpha$ι+3$\delta$)}⊂$\Delta$+($\omega$).
Let g=g(A) be an affine Lie algebra of type A(sub)2ι(sup)(2)(ι>1) and W be its Weyl group. In this paper, we find $\omega$$\in$W such that $\Delta$+U{1/2($\alpha$ι+$\delta$), 1/2($\alpha$ι+3$\delta$)}⊂$\Delta$+($\omega$).
COUNTING SELF-CONVERSE ORIENTED TREES
OPERATOR DOMAINS ON FUZZY SUBGROUPS