RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      저항 점용접 품질의 실시간 모니터링 및 제어를 위한 시스템 = Real Time Monitoring and Control System for Spot Weld Quality Assurance

      한글로보기

      https://www.riss.kr/link?id=A19613305

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. In the resistance spot welding process, the size of molten nugget and tensile-shear strength are criterion to assess weld quality. However real-time monitoring of the nugget size and tensile-shear strength is a extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual nugget size and tensile-shear strength through training. The results are quite promising in that real-time estimation of the invisible nugget size and tensile-shear strength can be achieved by analyzing the welding process variables without any conventional destructive testing of welds.
      번역하기

      Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. In the resistance spot welding process, the size of molten nugget and tensile-shear strength are criterion to assess we...

      Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. In the resistance spot welding process, the size of molten nugget and tensile-shear strength are criterion to assess weld quality. However real-time monitoring of the nugget size and tensile-shear strength is a extremely difficult problem. This paper describes the design of an artificial neural networks(ANN) estimator to predict the nugget size for on-line use of weld quality monitoring. The main task of the ANN estimator is to realize the mapping characteristics from the sampled dynamic resistance signal to the actual nugget size and tensile-shear strength through training. The results are quite promising in that real-time estimation of the invisible nugget size and tensile-shear strength can be achieved by analyzing the welding process variables without any conventional destructive testing of welds.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼