RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCOPUS

      L<sub>1</sub>-회귀추정량의 붕괴점 향상을 위한 알고리즘 = Algorithm for the L<sub>1</sub>-Regression Estimation with High Breakdown Point

      한글로보기

      https://www.riss.kr/link?id=A105203917

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      $L_1$-회귀추정량이 수직이상점에 대해서는 매우 로버스트하지만 지렛점에 대해서는 전혀 로버스트하지 않다는 사실은 잘 알려져 있다. 본 논문에서는 수직이상점은 물론 지렛점에 대해서도 로버스트한 $L_1$-회귀추정을 위한 알고리즘을 제안한다. MCD 또는 MVE-추정량에 바탕을 둔 로버스트거리를 기준으로 지렛점들을 식별하고, 식별된 지렛점들의 영향력을 적절히 감소시키기 위한 가중치를 결정한다. 가중치에 의해 변환된 자료에 선형척도변환 기법에 바탕을 둔 선형계획 알고리즘을 적용함으로써 $L_1$-회귀추정량의 붕괴점을 향상시킨다. 다양한 형태와 규모의 자료에 대한 모의실험 결과, 제안된 알고리즘에 의한 $L_1$-회귀추정량의 붕괴점이 크게 향상되는 것으로 나타났다.
      번역하기

      $L_1$-회귀추정량이 수직이상점에 대해서는 매우 로버스트하지만 지렛점에 대해서는 전혀 로버스트하지 않다는 사실은 잘 알려져 있다. 본 논문에서는 수직이상점은 물론 지렛점에 대해서도...

      $L_1$-회귀추정량이 수직이상점에 대해서는 매우 로버스트하지만 지렛점에 대해서는 전혀 로버스트하지 않다는 사실은 잘 알려져 있다. 본 논문에서는 수직이상점은 물론 지렛점에 대해서도 로버스트한 $L_1$-회귀추정을 위한 알고리즘을 제안한다. MCD 또는 MVE-추정량에 바탕을 둔 로버스트거리를 기준으로 지렛점들을 식별하고, 식별된 지렛점들의 영향력을 적절히 감소시키기 위한 가중치를 결정한다. 가중치에 의해 변환된 자료에 선형척도변환 기법에 바탕을 둔 선형계획 알고리즘을 적용함으로써 $L_1$-회귀추정량의 붕괴점을 향상시킨다. 다양한 형태와 규모의 자료에 대한 모의실험 결과, 제안된 알고리즘에 의한 $L_1$-회귀추정량의 붕괴점이 크게 향상되는 것으로 나타났다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼