In this paper, we proposed a multi-layer neural network for direct control method of nonlinear system. The proposed control method uses neural network as the controller to learn inverse model of plant. The neural network used consists of two parts; on...
In this paper, we proposed a multi-layer neural network for direct control method of nonlinear system. The proposed control method uses neural network as the controller to learn inverse model of plant. The neural network used consists of two parts; one part is for identification of linear part, and the other is for identification of nonlinear part of inverse system. The neural network has to be learned the liner part with RLS algorithm and the nonlinear part with error of plant. From the simulation and experiment of tracking control to use one link manipulator as plant, we proved usefulness of the proposed control method to comparing to conventional direct neural network control method. By comparing the two methods, from simulation and experiment, we were convinced that the proposed control method is more simple and accuracy than the conventional method. Moreover, number of weight and bias to be controller parameter are small, and it has smaller steady state error than conventional method.