RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Analysis and design of energy efficient pipelined SAR ADC using PVT-Robust capacitively degenerated dynamic amplifier

      한글로보기

      https://www.riss.kr/link?id=T16809733

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      In this dissertation, analysis and design of energy-efficient pipelined successive-approximation-register (SAR) analog-to-digital converter (ADC) using highly linear capacitively degenerated dynamic amplifier as a residue amplifier are discussed, and new practical solutions for this amplifier are proposed.
      In the Chapter 2, first, we review the recent design of energy-efficient discrete-time amplifiers that can amplify a residue of pipelined ADCs, and their limitations.
      Chapter 3 presents a review of the capacitively degenerated dynamic amplifier, which can achieves power efficiency and high linearity. In addition, we analyze a requirements and limitations as a residue amplifier. The architectural improvements and a practical timing generator for optimal amplification time, which can ensure temperature insensitivity are proposed to achieve high voltage gain and a process, voltage, and temperature (PVT)-robustness. Moreover, detailed noise analysis proves that this amplifier is suitable for stable residue amplification.
      Chapter 4 presents a low-power pipelined successive-approximation-register (SAR) analog-to-digital converter (ADC) using two-stage capacitively degenerated dynamic amplifier. Improved interstage gain eases the entire pipeline design by alleviating the noise requirement of the following stage. To prove the temperature insensitivity, the measurement against temperatures shows the huge variation of signal-to-noise-and-distortion ratio (SNDR), but performance degradation is fully recovered with adaptive timing generator.
      The proposed pipelined SAR ADC suggests the practical solutions of capacitively degenerated dynamic amplifier as a residue amplifier with the recent trend requiring low power consumption.
      번역하기

      In this dissertation, analysis and design of energy-efficient pipelined successive-approximation-register (SAR) analog-to-digital converter (ADC) using highly linear capacitively degenerated dynamic amplifier as a residue amplifier are discussed, and ...

      In this dissertation, analysis and design of energy-efficient pipelined successive-approximation-register (SAR) analog-to-digital converter (ADC) using highly linear capacitively degenerated dynamic amplifier as a residue amplifier are discussed, and new practical solutions for this amplifier are proposed.
      In the Chapter 2, first, we review the recent design of energy-efficient discrete-time amplifiers that can amplify a residue of pipelined ADCs, and their limitations.
      Chapter 3 presents a review of the capacitively degenerated dynamic amplifier, which can achieves power efficiency and high linearity. In addition, we analyze a requirements and limitations as a residue amplifier. The architectural improvements and a practical timing generator for optimal amplification time, which can ensure temperature insensitivity are proposed to achieve high voltage gain and a process, voltage, and temperature (PVT)-robustness. Moreover, detailed noise analysis proves that this amplifier is suitable for stable residue amplification.
      Chapter 4 presents a low-power pipelined successive-approximation-register (SAR) analog-to-digital converter (ADC) using two-stage capacitively degenerated dynamic amplifier. Improved interstage gain eases the entire pipeline design by alleviating the noise requirement of the following stage. To prove the temperature insensitivity, the measurement against temperatures shows the huge variation of signal-to-noise-and-distortion ratio (SNDR), but performance degradation is fully recovered with adaptive timing generator.
      The proposed pipelined SAR ADC suggests the practical solutions of capacitively degenerated dynamic amplifier as a residue amplifier with the recent trend requiring low power consumption.

      더보기

      목차 (Table of Contents)

      • Table of Contents ………………………………………………………………. i
      • List of Table …………………………………………………………………… iv
      • List of Figure …………………………………………………………………. iv
      • Abstract ……………………………………………………………………… viii
      • 1. Introduction ………………………………………………………………… 1
      • Table of Contents ………………………………………………………………. i
      • List of Table …………………………………………………………………… iv
      • List of Figure …………………………………………………………………. iv
      • Abstract ……………………………………………………………………… viii
      • 1. Introduction ………………………………………………………………… 1
      • 1.1. Motivation and Challenges …………………………………… 1
      • 1.2.A. Pipelined ADC: brief Overview …………………… 3
      • 1.2. Organization of the Dissertation ………………………………… 6
      • 1.3. Copyright ………………………………………………………… 8
      • 2. Review of Energy Efficient Residue Amplifier …………………………… 10
      • 2.1. Introduction ……………………………………………………… 10
      • 2.2. Dynamic Amplifier Topology ……………………………… 13
      • 2.2.A. Ring Amplifier ………………………………………… 13
      • 2.2.B. Floating Inverter Amplifier ………………………… 16
      • 2.2.C. Capacitively-degenerated Dynamic Amplifier …… 18
      • 2.3. Conclusion ……………………………………………………… 22
      • 3. PVT-Robust 2-stage Capacitively-degenerated Dynamic Amplifier …… 23
      • 3.1. Introduction ……………………………………………………… 23
      • 3.2. Limitation of Capacitively-degenerated Dynamic Amplifier … 25
      • 3.2.A. Gain Limitation …………………………………… 25
      • 3.2.B. Parasitic Capacitance Impact ……………………… 31
      • 3.2.C. PVT Immunity ……………………………………… 33
      • 3.3. Proposed Dynamic Amplifier ………………………………… 35
      • 3.2.A. Mismatch Impact …………………………………… 39
      • 3.4. On-chip Timing Generator for Temperature Stabilization … 42
      • 3.5. Noise Calculation and Analysis……………………………… 46
      • 3.5.A. Dynamic Amplifier Core ……………………………. 46
      • 3.5.B. Timing Generator ……………………………………. 47
      • 3.6. Conclusion ……………………………………………………… 53
      • 4. A 50 MS/s 65-dB SNDR Pipelined SAR ADC using Two-Stage Capacitively-Degenerated Dynamic Amplifier ………………………………………… 54
      • 4.1. Introduction ……………………………………………………… 54
      • 4.2. Implementation ………………………………………………… 56
      • 4.3. Residue Transfer ……………………………………………… 62
      • 4.4. Measurements Results …………………………………………… 65
      • 4.5. Conclusion ……………………………………………………… 75
      • 5. Conclusions ……………………………………………………………….… 76
      • References …………………………………………………………………… 78
      • 국문 요약 …………………………………………………………………... 83
      • List of Publications …………………………………………………………. 86
      더보기

      참고문헌 (Reference)

      1. A SAR-assisted two-stage pipeline ADC, M. P. Flynn, C. C. Lee, vol. 46, no. 4, pp. 859–869, , 2011

      2. Ring Amplifiers for Switched Capacitor Circuits, B. Hershberg, K. Sobue, U. -K. Moon, K. Hamashita, S. Weaver, S. Takeuchi, vol. 47, no. 12, pp. 2928-2942, , 2012

      3. A 2.6 mW 6 bit 2.2 GS/s Fully Dynamic Pipeline ADC in 40 nm Digital CMOS, B. Verbruggen, J. Craninckx, P. Wambacq, M. Kuijk, G. Van der Plas, vol. 45, no. 10, pp. 2080-2090, , 2010

      4. A capacitively degenerated 100-dB linear 20–150 MS/s dynamic amplifier, K. A. A. Makinwa, M. S. Akter, K. Bult, vol. 53, no. 4, pp. 1115–1126, , 2018

      5. A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration,, C. R. Grace, S. H. Lewis, P. J. Hurst, vol. 40, no. 5, pp. 1038–1046, , 2005

      6. An Energy-Efficient Comparator With Dynamic Floating Inverter Amplifier, in, X. Tang, vol. 55, no. 4, pp. 1011-1022, , 2020

      7. A 1.5 mW 68 dB SNDR 80 Ms/s 2× interleaved pipelined SAR ADC in 28 nm CMOS,, F. Van Der Goes, vol. 49, no. 12, pp. 2835–2845, , 2014

      8. A compact 10-b SAR ADC with unit-length capacitors and a passive FIR filter,, P. Harpe, vol. 54, no. 3, pp. 636–645, , 2019

      9. A 13-mW 64-dB SNDR 280-MS/s pipelined ADC using linearized integrating amplifiers,, R. Sehgal, K. Bult, F. Van der Goes, vol. 53, no. 7, pp. 1878–1888, , 2018

      10. An 11-b 100-MS/s fully dynamic pipelined ADC using a high-linearity dynamic amplifier,, S. Ahn, C. Lim, Y. Park, C. Kim, J. Song, Y. Choi, vol. 55, no. 9, pp. 2468–2477, , 2020

      1. A SAR-assisted two-stage pipeline ADC, M. P. Flynn, C. C. Lee, vol. 46, no. 4, pp. 859–869, , 2011

      2. Ring Amplifiers for Switched Capacitor Circuits, B. Hershberg, K. Sobue, U. -K. Moon, K. Hamashita, S. Weaver, S. Takeuchi, vol. 47, no. 12, pp. 2928-2942, , 2012

      3. A 2.6 mW 6 bit 2.2 GS/s Fully Dynamic Pipeline ADC in 40 nm Digital CMOS, B. Verbruggen, J. Craninckx, P. Wambacq, M. Kuijk, G. Van der Plas, vol. 45, no. 10, pp. 2080-2090, , 2010

      4. A capacitively degenerated 100-dB linear 20–150 MS/s dynamic amplifier, K. A. A. Makinwa, M. S. Akter, K. Bult, vol. 53, no. 4, pp. 1115–1126, , 2018

      5. A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration,, C. R. Grace, S. H. Lewis, P. J. Hurst, vol. 40, no. 5, pp. 1038–1046, , 2005

      6. An Energy-Efficient Comparator With Dynamic Floating Inverter Amplifier, in, X. Tang, vol. 55, no. 4, pp. 1011-1022, , 2020

      7. A 1.5 mW 68 dB SNDR 80 Ms/s 2× interleaved pipelined SAR ADC in 28 nm CMOS,, F. Van Der Goes, vol. 49, no. 12, pp. 2835–2845, , 2014

      8. A compact 10-b SAR ADC with unit-length capacitors and a passive FIR filter,, P. Harpe, vol. 54, no. 3, pp. 636–645, , 2019

      9. A 13-mW 64-dB SNDR 280-MS/s pipelined ADC using linearized integrating amplifiers,, R. Sehgal, K. Bult, F. Van der Goes, vol. 53, no. 7, pp. 1878–1888, , 2018

      10. An 11-b 100-MS/s fully dynamic pipelined ADC using a high-linearity dynamic amplifier,, S. Ahn, C. Lim, Y. Park, C. Kim, J. Song, Y. Choi, vol. 55, no. 9, pp. 2468–2477, , 2020

      11. A 1- GS/s, 12-b, single-channel pipelined ADC with dead-zonedegenerated ring amplifiers, J. Craninckx, E. Martens, J. Lagos, P. Wambacq, B. P. Hershberg, vol. 54, no. 3, pp. 646–658, , 2019

      12. A 10-mW16-b 15-MS/s two-step SAR ADC with 95- dB DR using dual-deadzone ring amplifier,, A. ElShater, vol. 54, no. 12, pp. 3410–3420, , 2019

      13. An Ultra-Low- Voltage 160 MS/s 7 Bit Interpolated Pipeline ADC Using Dynamic Amplifiers, in, D. Paik, S. Lee, A. Matsuzawa, J. Lin, M. Miyahara, vol. 50, no. 6, pp. 1399- 1411, , 2015

      14. A 348-μW 68.8-dB SNDR 20-MS/s pipelined SAR ADC with a closed-loop two-stage dynamic amplifier,, Y. Chae, Y. Kwon, T. Kim, N. Sun, vol. 4, pp. 166–169, , 2021

      15. A 130 mW 100 MS/s pipelined ADC with 69 dB SNDR enabled by digital harmonic distortion correction, A. Panigada, I. Galton, vol. 44, no. 12, pp. 3314–3328, , 2009

      16. A 10-bit, 40-MS/s, 1.21 mW pipelined SAR ADC using single-ended 1.5-bit/cycle conversion technique,, M. Nozawa, M. Furuta, T. Itakura, vol. 46, no. 6, pp. 1360–1370, , 2011

      17. A 0.4-to- 40 MS/s 75.7 dB-SNDR fully dynamic event-driven pipelined ADC with 3-stage cascoded floating inverter amplifier, N. Sun, D. Z. Pan, J. Liu, X. Yang, X. Tang, W. Shi, IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 64, 2021, pp. 376–378, , 2021

      18. A non-interleaved 12-b 330-MS/s pipelined-SAR ADC with PVT-stabilized dynamic amplifier achieving sub-1- dB SNDR variation,, H. Huang, Y. Chiu, H. Xu, B. Elies, vol. 52, no. 12, pp. 3235– 3247, , 2017

      19. A calibration-free 2.3 mW 73.2 dB SNDR 15 b 100 MS/s four-stage fully differential ring amplifier based SAR-assisted pipeline ADC,, Y. Lim, M. P. Flynn, pp. 98–99, , 2017

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼