RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      OpenCL을 이용한 임베디드 GPGPU환경에서의 AES 암호화 성능 개선과 평가

      한글로보기

      https://www.riss.kr/link?id=A101952849

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      최근, ARM Mali와 같은 여러 임베디드 프로세서들이 OpenCL과 같은 GPGPU 프레임워크를 지원함에 따라 기존 PC 환경에서 활용되던 GPGPU 기술이 임베디드 시스템 영역으로 확대 되고 있다. 그러나 임베디드 시스템은 PC와는 상이한 구조를 갖으며, 저전력이나 실시간성과 같은 성능이 더욱 중요하다. 본 논문에서는 임베디드 GPGPU환경에서 AES 암호화 알고리즘을 개방형 범용 병렬 컴퓨팅 프레임워크인 OpenCL을 사용하여 구현하고 이를 CPU만을 이용한 구현과 비교한다. 실험결과, 1000KByte의 데이터 사이즈의 128비트 AES 암호화 시에 OpenCL을 사용하여 GPU로 병렬 처리하는 것이 OpenMP를 사용하여 CPU상에서 병렬 처리한 방식보다 응답 시간은 최대 1/150, 에너지 소비량은 최대 1/290로 감소함을 확인하였다. 또한 호스트와 GPU 디바이스 간에 메모리를 공유하는 임베디드 구조의 특성에 최적화하여 메모리 복제를 하지 않는 기법을 적용하는 경우 응답시간과 에너지 소비량에서 최대 100% 이상의 추가적인 성능개선을 이룰 수 있었으며, 연구에서 사용한 데이터의 크기에 비례하여 더 높은 성능의 개선이 나타나는 것을 확인하였다.
      번역하기

      최근, ARM Mali와 같은 여러 임베디드 프로세서들이 OpenCL과 같은 GPGPU 프레임워크를 지원함에 따라 기존 PC 환경에서 활용되던 GPGPU 기술이 임베디드 시스템 영역으로 확대 되고 있다. 그러나 임...

      최근, ARM Mali와 같은 여러 임베디드 프로세서들이 OpenCL과 같은 GPGPU 프레임워크를 지원함에 따라 기존 PC 환경에서 활용되던 GPGPU 기술이 임베디드 시스템 영역으로 확대 되고 있다. 그러나 임베디드 시스템은 PC와는 상이한 구조를 갖으며, 저전력이나 실시간성과 같은 성능이 더욱 중요하다. 본 논문에서는 임베디드 GPGPU환경에서 AES 암호화 알고리즘을 개방형 범용 병렬 컴퓨팅 프레임워크인 OpenCL을 사용하여 구현하고 이를 CPU만을 이용한 구현과 비교한다. 실험결과, 1000KByte의 데이터 사이즈의 128비트 AES 암호화 시에 OpenCL을 사용하여 GPU로 병렬 처리하는 것이 OpenMP를 사용하여 CPU상에서 병렬 처리한 방식보다 응답 시간은 최대 1/150, 에너지 소비량은 최대 1/290로 감소함을 확인하였다. 또한 호스트와 GPU 디바이스 간에 메모리를 공유하는 임베디드 구조의 특성에 최적화하여 메모리 복제를 하지 않는 기법을 적용하는 경우 응답시간과 에너지 소비량에서 최대 100% 이상의 추가적인 성능개선을 이룰 수 있었으며, 연구에서 사용한 데이터의 크기에 비례하여 더 높은 성능의 개선이 나타나는 것을 확인하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Recently, an increasing number of embedded processors such as ARM Mali begin to support GPGPU programming frameworks, such as OpenCL. Thus, GPGPU technologies that have been used in PC and server environments are beginning to be applied to the embedded systems. However, many embedded systems have different architectural characteristics compare to traditional PCs and low-power consumption and real-time performance are also important performance metrics in these systems. In this paper, we implement a parallel AES cryptographic algorithm for a modern embedded GPU using OpenCL, a standard parallel computing framework, and compare performance against various baselines. Experimental results show that the parallel GPU AES implementation can reduce the response time by about 1/150 and the energy consumption by approximately 1/290 compare to OpenMP implementation when 1000KB input data is applied. Furthermore, an additional 100 % performance improvement of the parallel AES algorithm was achieved by exploiting the characteristics of embedded GPUs such as removing copying data between GPU and host memory. Our results also demonstrate that higher performance improvement can be achieved with larger size of input data.
      번역하기

      Recently, an increasing number of embedded processors such as ARM Mali begin to support GPGPU programming frameworks, such as OpenCL. Thus, GPGPU technologies that have been used in PC and server environments are beginning to be applied to the embedde...

      Recently, an increasing number of embedded processors such as ARM Mali begin to support GPGPU programming frameworks, such as OpenCL. Thus, GPGPU technologies that have been used in PC and server environments are beginning to be applied to the embedded systems. However, many embedded systems have different architectural characteristics compare to traditional PCs and low-power consumption and real-time performance are also important performance metrics in these systems. In this paper, we implement a parallel AES cryptographic algorithm for a modern embedded GPU using OpenCL, a standard parallel computing framework, and compare performance against various baselines. Experimental results show that the parallel GPU AES implementation can reduce the response time by about 1/150 and the energy consumption by approximately 1/290 compare to OpenMP implementation when 1000KB input data is applied. Furthermore, an additional 100 % performance improvement of the parallel AES algorithm was achieved by exploiting the characteristics of embedded GPUs such as removing copying data between GPU and host memory. Our results also demonstrate that higher performance improvement can be achieved with larger size of input data.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 배경과 관련연구
      • 3. 임베디드 GPGPU환경에서의 AES구현
      • 요약
      • Abstract
      • 1. 서론
      • 2. 배경과 관련연구
      • 3. 임베디드 GPGPU환경에서의 AES구현
      • 4. 성능 평가
      • 5. 결론 및 향후 연구
      • References
      더보기

      참고문헌 (Reference)

      1 Joan Daemen, "The design of Rijndael: AES-the advanced encryption standard" Springer Science & Business Media 2013

      2 Osvaldo Gervasi, "The AES implantation based on OpenCL for multi/many core architecture" 2010

      3 S. S. Navalgund, "Parallelization of AES Algorithm Using OpenMP" 1 (1): 2013

      4 Aaftab Munshi, "OpenCL Programming Guide" Addison-Wesley Professional 2011

      5 염용진, "GPU용 연산 라이브러리 CUDA를 이용한 블록암호 고속 구현" 한국정보보호학회 18 (18): 23-32, 2008

      6 김규운, "GPU 아키텍처의 AES 암호화 성능 예측 분석 모델" 대한전자공학회 50 (50): 89-96, 2013

      7 Le Sueur, Etienne, "Dynamic voltage and frequency scaling: The laws of diminishing returns" 1-8, 2010

      8 Debra L. Cook, "CryptoGraphics: Secret key cryptography using graphics cards" Springer Berlin Heidelberg 334-350, 2005

      1 Joan Daemen, "The design of Rijndael: AES-the advanced encryption standard" Springer Science & Business Media 2013

      2 Osvaldo Gervasi, "The AES implantation based on OpenCL for multi/many core architecture" 2010

      3 S. S. Navalgund, "Parallelization of AES Algorithm Using OpenMP" 1 (1): 2013

      4 Aaftab Munshi, "OpenCL Programming Guide" Addison-Wesley Professional 2011

      5 염용진, "GPU용 연산 라이브러리 CUDA를 이용한 블록암호 고속 구현" 한국정보보호학회 18 (18): 23-32, 2008

      6 김규운, "GPU 아키텍처의 AES 암호화 성능 예측 분석 모델" 대한전자공학회 50 (50): 89-96, 2013

      7 Le Sueur, Etienne, "Dynamic voltage and frequency scaling: The laws of diminishing returns" 1-8, 2010

      8 Debra L. Cook, "CryptoGraphics: Secret key cryptography using graphics cards" Springer Berlin Heidelberg 334-350, 2005

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2014-09-16 학술지명변경 한글명 : 정보과학회논문지 : 컴퓨팅의 실제 및 레터 -> 정보과학회 컴퓨팅의 실제 논문지
      외국어명 : Journal of KIISE : Computing Practices and Letters -> KIISE Transactions on Computing Practices
      KCI등재
      2013-04-26 학술지명변경 외국어명 : Journal of KISS : Computing Practices and Letters -> Journal of KIISE : Computing Practices and Letters KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-10-02 학술지명변경 한글명 : 정보과학회논문지 : 컴퓨팅의 실제 -> 정보과학회논문지 : 컴퓨팅의 실제 및 레터
      외국어명 : Journal of KISS : Computing Practices -> Journal of KISS : Computing Practices and Letters
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.29 0.29 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.21 0.503 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼