RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      CaO 첨가 AZ31 압출재의 개량된 미세조직이 인장, 고주기 피로 및 피로 균열 전파 특성에 미치는 영향 = Effect of Tailored Microstructures in CaO-Added AZ31 Extrusion Material on Tensile, High Cycle Fatigue and Fatigue Crack Propagation Properties

      한글로보기

      https://www.riss.kr/link?id=A107496594

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The effect of tailored microstructures in 0.5 wt% CaO added AZ31 on tensile, high-cycle fatigue, and fatigue crack growth properties was examined. By adding CaO, the average grain size (AGS) was significantly reduced from 4.25±2.32 μm (conventional AZ31) to 2.42±1.60 μm (CaO-AZ31). The fineprecipitates of CaO-AZ31 were more evenly distributed and their fraction was higher than those of conventional AZ31. The fine-precipitates were identified as Al8Mn4Ca and (Mg, Al)2Ca in CaO-AZ31, meanwhile, were identified as Al8Mn5 and Mg17Al11 in conventional AZ31. The tensile test results showed that the yield strengths of CaO-AZ31 and conventional AZ31 were 238.0 MPa and 206.7 MPa, respectively. The elongation-to-failure also increased when CaO was added. The improved tensile properties of CaO-AZ31 could be explained by grain refinement and precipitation hardening. The high-cycle fatigue limit also increased about 15% with added CaO. The fatigue limits as a function of the tensile strengths of CaO-AZ31 and conventional AZ31 were 0.508 and 0.457, respectively. The origin of the improved fatigue resistance was attributed to inhibition of the formation of DTs, which acted as the fatigue crack source, in CaO-AZ31. In contrast, the fatigue crack growth property did not change when CaO was added. Based on the above findings, the relationships between microstructure, mechanical properties and deformation mechanisms are also discussed.
      번역하기

      The effect of tailored microstructures in 0.5 wt% CaO added AZ31 on tensile, high-cycle fatigue, and fatigue crack growth properties was examined. By adding CaO, the average grain size (AGS) was significantly reduced from 4.25±2.32 μm (conventional ...

      The effect of tailored microstructures in 0.5 wt% CaO added AZ31 on tensile, high-cycle fatigue, and fatigue crack growth properties was examined. By adding CaO, the average grain size (AGS) was significantly reduced from 4.25±2.32 μm (conventional AZ31) to 2.42±1.60 μm (CaO-AZ31). The fineprecipitates of CaO-AZ31 were more evenly distributed and their fraction was higher than those of conventional AZ31. The fine-precipitates were identified as Al8Mn4Ca and (Mg, Al)2Ca in CaO-AZ31, meanwhile, were identified as Al8Mn5 and Mg17Al11 in conventional AZ31. The tensile test results showed that the yield strengths of CaO-AZ31 and conventional AZ31 were 238.0 MPa and 206.7 MPa, respectively. The elongation-to-failure also increased when CaO was added. The improved tensile properties of CaO-AZ31 could be explained by grain refinement and precipitation hardening. The high-cycle fatigue limit also increased about 15% with added CaO. The fatigue limits as a function of the tensile strengths of CaO-AZ31 and conventional AZ31 were 0.508 and 0.457, respectively. The origin of the improved fatigue resistance was attributed to inhibition of the formation of DTs, which acted as the fatigue crack source, in CaO-AZ31. In contrast, the fatigue crack growth property did not change when CaO was added. Based on the above findings, the relationships between microstructure, mechanical properties and deformation mechanisms are also discussed.

      더보기

      참고문헌 (Reference)

      1 D. Brough, 1-2 : 100007-, 2020

      2 M. Li, 611 : 142-, 2014

      3 F. Zhao, 798 : 350-, 2019

      4 M. S. Tasi, 29 : 759-, 2013

      5 U. M. Chaudry, 11 : 2201-, 2018

      6 S. Jayasathyakawin, 27 : 909-, 2020

      7 T. Kong, 8 : 163-, 2020

      8 S. W. Lee, 66 : 139-, 2021

      9 K. Atik, 725 : 267-, 2018

      10 L. Wang, 1 : 312-, 2013

      1 D. Brough, 1-2 : 100007-, 2020

      2 M. Li, 611 : 142-, 2014

      3 F. Zhao, 798 : 350-, 2019

      4 M. S. Tasi, 29 : 759-, 2013

      5 U. M. Chaudry, 11 : 2201-, 2018

      6 S. Jayasathyakawin, 27 : 909-, 2020

      7 T. Kong, 8 : 163-, 2020

      8 S. W. Lee, 66 : 139-, 2021

      9 K. Atik, 725 : 267-, 2018

      10 L. Wang, 1 : 312-, 2013

      11 I. -H. Jung, 102 : 1-, 2015

      12 K. Hantzxche, 63 : 725-, 2010

      13 T. Al-Samman, 528 : 3809-, 2011

      14 J. Feng, 800 : 140204-, 2021

      15 A. Suzuki, 53 : 2823-, 2005

      16 W. J. Kim, 30 : 4120-, 2009

      17 P. Li, 59 : 671-, 2005

      18 J. -H. Seo, 31 : 11-, 2011

      19 Y. -K. Kim, 26 : 806-, 2017

      20 H. -W. Son, 744 : 724-, 2019

      21 H. -W. Son, 695 : 379-, 2017

      22 H. -W. Son, 151 : 368-, 2019

      23 Y. Zeng, 1 : 297-, 2013

      24 R. Xin, 700 : 226-, 2017

      25 백민석, "Strip Casting 공정으로 제조된 Al 3003 합금의 미세조직, 인장 및 피로 특성에 미치는 후열처리 영향" 대한금속·재료학회 58 (58): 151-161, 2020

      26 "International Energy Outlook 2019"

      27 Sumin Kim, "Effect of Pre-Straining on High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Precipitation Hardened Steel" 대한금속·재료학회 27 (27): 1383-1391, 2021

      28 이상원, "AZ80과 TAZ711 마그네슘 압출재의 상온 및 고온 인장 특성과 고주기 피로 특성" 대한금속·재료학회 56 (56): 699-707, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.24 1.12 0.9
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.73 0.6 0.835 0.2
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼