RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      온실 내 백다다기 오이의 생육단계에 따른 흡광계수 변화 모델 개발 = Development of a Light Extinction Coefficient Change Model according to the Growth Stage of Cucumber in a Greenhouse

      한글로보기

      https://www.riss.kr/link?id=A108462083

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore, this study aims to develop a light extinction coefficient model reflecting the plant growth. To measure the extinction coefficient, five pyranometers were installed vertically according to the height of the plant, and the light intensity by height was collected every second during the entire growing season. According to each growth stage in the early, middle, and late stages, the difference between the top and bottom light intensity tended to increase to 69%, 72%, and 81%. When leaf area index and plant height increased, the extinction coefficient decreased, and it showed an exponential decay relationship. Three-dimensional model reflecting the two growth indexes, the paraboloid had the lowest RMSE of 1.340 and the highest regression constant of 0.968. Through this study, it was possible to predict the more precise light extinction coefficient during the growing period of plants. Furthermore, it is judged that this can be utilized for predicting and analyzing photosynthesis and transpiration according to the plant height.
      번역하기

      Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore,...

      Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore, this study aims to develop a light extinction coefficient model reflecting the plant growth. To measure the extinction coefficient, five pyranometers were installed vertically according to the height of the plant, and the light intensity by height was collected every second during the entire growing season. According to each growth stage in the early, middle, and late stages, the difference between the top and bottom light intensity tended to increase to 69%, 72%, and 81%. When leaf area index and plant height increased, the extinction coefficient decreased, and it showed an exponential decay relationship. Three-dimensional model reflecting the two growth indexes, the paraboloid had the lowest RMSE of 1.340 and the highest regression constant of 0.968. Through this study, it was possible to predict the more precise light extinction coefficient during the growing period of plants. Furthermore, it is judged that this can be utilized for predicting and analyzing photosynthesis and transpiration according to the plant height.

      더보기

      국문 초록 (Abstract)

      시설 내 작물이 이용하는 수광특성의 이해와 지속적으로 변화하는 광환경의 추적은 광합성과 증산반응 연구에서 중요하다. 또한 재배기간 동안 작물이 생장함에 따라 광이용 형태가 지속적으로 변화한다. 따라서 본 연구에서는 작물의 생육을 반영한 흡광계수 추정 모델을 개발하였다. 흡광계수의 측정을 위하여 작물의 높이에 따라 수직으로 일사량계를 5개 설치하였으며, 작물의 전 생육기간(1-85DAT) 동안 1초 단위로 측정을 하였다. 초기, 중기, 후기 각각의 생육단계에 따라 최상단 광량과 최하단의 광량의 차이가 69%, 72%, 81%로 증가하는 경향을 보였다. LAI와 초장이 증가함에 따라 흡광계수는 감소하였으며, 지수적 감소 관계를 보였다. 두 생육지표를 모두 반영한 3차원 모델에서는 Paraboloid 식이 평균 제곱근 오차(RMSE)가 1.340으로 가장 낮았고, 결정계수(R2)는 0.968 로 가장 높았다. 본 연구를 통하여 작물 재배기간 동안 보다 정확한 흡광계수를 예측할 수 있게 되었고, 이는 작물의 높이에 따른 광합성 및 증산량 예측과 분석 연구에 활용될 수 있을 것으로 판단된다.
      번역하기

      시설 내 작물이 이용하는 수광특성의 이해와 지속적으로 변화하는 광환경의 추적은 광합성과 증산반응 연구에서 중요하다. 또한 재배기간 동안 작물이 생장함에 따라 광이용 형태가 지속적...

      시설 내 작물이 이용하는 수광특성의 이해와 지속적으로 변화하는 광환경의 추적은 광합성과 증산반응 연구에서 중요하다. 또한 재배기간 동안 작물이 생장함에 따라 광이용 형태가 지속적으로 변화한다. 따라서 본 연구에서는 작물의 생육을 반영한 흡광계수 추정 모델을 개발하였다. 흡광계수의 측정을 위하여 작물의 높이에 따라 수직으로 일사량계를 5개 설치하였으며, 작물의 전 생육기간(1-85DAT) 동안 1초 단위로 측정을 하였다. 초기, 중기, 후기 각각의 생육단계에 따라 최상단 광량과 최하단의 광량의 차이가 69%, 72%, 81%로 증가하는 경향을 보였다. LAI와 초장이 증가함에 따라 흡광계수는 감소하였으며, 지수적 감소 관계를 보였다. 두 생육지표를 모두 반영한 3차원 모델에서는 Paraboloid 식이 평균 제곱근 오차(RMSE)가 1.340으로 가장 낮았고, 결정계수(R2)는 0.968 로 가장 높았다. 본 연구를 통하여 작물 재배기간 동안 보다 정확한 흡광계수를 예측할 수 있게 되었고, 이는 작물의 높이에 따른 광합성 및 증산량 예측과 분석 연구에 활용될 수 있을 것으로 판단된다.

      더보기

      참고문헌 (Reference)

      1 Turton S. M., "The relative distribution of photosynthetically active radiation within four tree canopies, Cragieburn Range, New Zealand" 15 : 383-394, 1985

      2 Acock B., "The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: an experimental examination of two canopy models" 29 : 815-827, 1978

      3 Uchijima Z., "The climate in growth chamber: (6) Diffuse radiation environment in vinylhouses" 32 : 117-125, 1976

      4 Iwakiri S., "Studies on the canopy photosynthesis of the horticultural crops in controlled environment: (2) Distribution of percent sunlit leaf area in hedgerow cucumber canopies" 30 : 17-26, 1974

      5 Higashide T, "Review of dry matter production and growth modelling to improve the yield of greenhouse tomatoes" 91 : 247-266, 2022

      6 Tan C. W., "Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law" 10 : 929-, 2020

      7 Loomis R. S., "Quantitative descriptions of foliage display and light absorption in field communities of corn plants" 8 : 352-356, 1968

      8 Jones H.G., "Plants and microclimate: a quantitative approach to environmental plant physiology" Cambridge University Press 31-35, 1992

      9 Kendrick R. E., "Photomorphogenesis in Plants" Kluwer Academic Publishers 99-114, 1994

      10 Monsi M., "On the factor light in plant communities and its importance for matter production" 95 : 549-567, 2005

      1 Turton S. M., "The relative distribution of photosynthetically active radiation within four tree canopies, Cragieburn Range, New Zealand" 15 : 383-394, 1985

      2 Acock B., "The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: an experimental examination of two canopy models" 29 : 815-827, 1978

      3 Uchijima Z., "The climate in growth chamber: (6) Diffuse radiation environment in vinylhouses" 32 : 117-125, 1976

      4 Iwakiri S., "Studies on the canopy photosynthesis of the horticultural crops in controlled environment: (2) Distribution of percent sunlit leaf area in hedgerow cucumber canopies" 30 : 17-26, 1974

      5 Higashide T, "Review of dry matter production and growth modelling to improve the yield of greenhouse tomatoes" 91 : 247-266, 2022

      6 Tan C. W., "Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law" 10 : 929-, 2020

      7 Loomis R. S., "Quantitative descriptions of foliage display and light absorption in field communities of corn plants" 8 : 352-356, 1968

      8 Jones H.G., "Plants and microclimate: a quantitative approach to environmental plant physiology" Cambridge University Press 31-35, 1992

      9 Kendrick R. E., "Photomorphogenesis in Plants" Kluwer Academic Publishers 99-114, 1994

      10 Monsi M., "On the factor light in plant communities and its importance for matter production" 95 : 549-567, 2005

      11 Peil R. M., "Light interception of a greenhouse cucumber crop: Measurements and modeling results" 588 : 81-87, 2002

      12 Nederhoff E.M., "Light interception of a cucumber crop at different stages of growth" 148 : 525-534, 1983

      13 Pepper G. E., "Leaf orientation and yield of maize" 17 : 883-886, 1977

      14 Vos J., "Functional–structural plant modelling: A new versatile tool in crop science" 61 : 2101-2115, 2010

      15 Tahiri A. Z., "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize" 84 : 186-192, 2006

      16 Dufrene E., "Estimation of deciduous forest leaf area index using direct and indirect methods" 104 : 156-162, 1995

      17 Hara T., "Effects of density and extinction coefficient on size variability in plant populations" 57 : 885-892, 1986

      18 Hirose T, "Development of the Monsi–Saeki theory on canopy structure and function" 95 : 483-494, 2005

      19 Chen J. M., "Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications" 124 : 99-119, 1999

      20 Rural Development Administration(RDA), "Cucumber-Agricultural technology guide 107" RDA 24-25, 2018

      21 Smith F. W., "Comparison of leaf area index estimates from tree allometrics and measured light interception" 37 : 1682-1688, 1991

      22 Nobel P. S., "Canopy structure and light interception. Photosynthesis and production in a changing environment. A Field and Laboratory Manual" Springer 79-90, 1993

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼