RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS

      Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage

      한글로보기

      https://www.riss.kr/link?id=A107448492

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>High performance film cooling holes with complicated geometries have been regarded as impractical up to now because of manufacturability issues. However, recent advances in additive manufacturin...

      <P><B>Abstract</B></P> <P>High performance film cooling holes with complicated geometries have been regarded as impractical up to now because of manufacturability issues. However, recent advances in additive manufacturing (AM) technology have opened up new doors. Investigating characteristics of film holes built with AM, and finding the optimum shape considering these characteristics are now required to confirm their practical utility. In this paper, the performance of a high-efficiency film hole is numerically investigated. In-hole roughness and blade surface roughness are examined assuming an AM process, and contorted hole shape caused by partial blockage is also considered. A robust hole shape is obtained considering these uncertainties, utilizing a reference hole shape made by combining three cylindrical holes, which is meant to mitigate the detrimental effect of the counter-clockwise vortex pair. Main hole diameter, injection angle, and two angles for defining the two auxiliary holes are used as design variables to be optimized. For flow field and thermal analysis with roughness, compressible steady Reynolds averaged Navier-Stokes equations with a sand-grain roughness model are used. For the probabilistic assessment of each hole shape, Monte Carlo Simulations with the Kriging surrogate model is used, along with efficient global optimization (EGO) and a genetic algorithm. As a result, a high performance yet robust film cooling hole shape is obtained.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼