RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Microbial fuel cell for oilfield produced water treatment and reuse: Modelling and process optimization

      한글로보기

      https://www.riss.kr/link?id=A107229778

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Oilfield produced water is one of the vast amounts of wastewater that pollute the environment and cause serious problems. In this study, the produced water was treated in a microbial fuel cell (MFC), and response surface methodology and central composite design (RSM/CCD) were used as powerful tools to optimize the process. The results of two separate parameters of sulfonated poly ether ether ketone (SPEEK) as well as nanocomposite composition (CNT/Pt) on the chemical oxygen demand (COD) removal and power generation were discussed. The nanocomposite was analyzed using XRD, SEM, and TEM. Moreover, the degree of sulfonation (DS) was measured by NMR. A quadratic model was utilized to forecast the removal of COD and power generation under distinct circumstances. To obtain the maximum COD removal along with maximum power generation, favorable conditions were achieved by statistical and mathematical techniques. The findings proved that MFC could remove 92% of COD and generate 545mW/m2 of power density at optimum conditions of DS=80; and CNT/Pt of 14 wt% CNT- 86 wt% Pt.
      번역하기

      Oilfield produced water is one of the vast amounts of wastewater that pollute the environment and cause serious problems. In this study, the produced water was treated in a microbial fuel cell (MFC), and response surface methodology and central compos...

      Oilfield produced water is one of the vast amounts of wastewater that pollute the environment and cause serious problems. In this study, the produced water was treated in a microbial fuel cell (MFC), and response surface methodology and central composite design (RSM/CCD) were used as powerful tools to optimize the process. The results of two separate parameters of sulfonated poly ether ether ketone (SPEEK) as well as nanocomposite composition (CNT/Pt) on the chemical oxygen demand (COD) removal and power generation were discussed. The nanocomposite was analyzed using XRD, SEM, and TEM. Moreover, the degree of sulfonation (DS) was measured by NMR. A quadratic model was utilized to forecast the removal of COD and power generation under distinct circumstances. To obtain the maximum COD removal along with maximum power generation, favorable conditions were achieved by statistical and mathematical techniques. The findings proved that MFC could remove 92% of COD and generate 545mW/m2 of power density at optimum conditions of DS=80; and CNT/Pt of 14 wt% CNT- 86 wt% Pt.

      더보기

      참고문헌 (Reference)

      1 J. Hao, 179 : 276-, 2019

      2 L. -M. Zhang, 108 : 561-, 2016

      3 M. Gummalla, 5 : 926-, 2015

      4 M. Sedighi, 35 : 236-, 2020

      5 C. Baldizzone, 53 : 14250-, 2014

      6 A. H. Khan, 90 : 627-, 2017

      7 T. Chen, 16 : 272-, 2013

      8 B. Erable, 5 : 975-, 2012

      9 M. Safari, 138 : 33-, 2017

      10 A. Agi, 51 : 214-, 2019

      1 J. Hao, 179 : 276-, 2019

      2 L. -M. Zhang, 108 : 561-, 2016

      3 M. Gummalla, 5 : 926-, 2015

      4 M. Sedighi, 35 : 236-, 2020

      5 C. Baldizzone, 53 : 14250-, 2014

      6 A. H. Khan, 90 : 627-, 2017

      7 T. Chen, 16 : 272-, 2013

      8 B. Erable, 5 : 975-, 2012

      9 M. Safari, 138 : 33-, 2017

      10 A. Agi, 51 : 214-, 2019

      11 H. Chang, 455 : 34-, 2019

      12 S. Munirasu, 100 : 183-, 2016

      13 M. A. Al-Ghouti, 28 : 222-, 2019

      14 G. Ji, 18 : 459-, 2002

      15 S. Jiménez, 192 : 186-, 2018

      16 A. Fakhru’l-Razi, 170 : 530-, 2009

      17 M. Wang, 7 : 102878-, 2019

      18 H. Fakharian, 72 : 157-, 2017

      19 P. Jain, 166 : 96-, 2017

      20 B. Jia, 104 : 82-, 2019

      21 J. Zheng, 104 : 7-, 2016

      22 C. Wang, 32 : 100972-, 2019

      23 G. Mohanakrishna, 665 : 820-, 2019

      24 H. Li, 298 : 122421-, 2019

      25 E. T. Igunnu, 9 : 157-, 2014

      26 M. Ghasemi, 325 : 1-, 2013

      27 M. Sedighi, 57 : 4243-, 2018

      28 J. X. Leong, 28 : 575-, 2013

      29 M. Ghasemi, 36 : 13746-, 2011

      30 H. Yano, 29 : 323-, 2016

      31 M. Ghasemi, 41 : 4862-, 2016

      32 M. Ghasemi, 102 : 1050-, 2013

      33 S. Hisham, 1 : 646-, 2019

      34 H. Ilbeygi, 45 : 2265-, 2014

      35 M. Sedighi, 32 : 7412-, 2018

      36 M. Mohammadi, 10 : 195-, 2019

      37 M. Mohammadi, 238 : 326-, 2017

      38 M. Ghasemi, 1 : 1-, 2020

      39 M. Ghasemi, 41 : 4872-, 2016

      40 Y. Mohan, 34 : 7542-, 2009

      41 B. Hou, 102 : 4433-, 2011

      42 N. Garino, 8 : 4633-, 2016

      43 A. Mehdinia, 130 : 512-, 2014

      44 A. Kongkanand, 7 : 1127-, 2016

      45 H. S. Ahn, 23 : 227-, 2013

      46 J. An, 45 : 5441-, 2011

      47 장호남, "Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence" 한국화학공학회 25 (25): 535-541, 2008

      48 K. Subramanian, "Nanofluids and their engineering applications" CRC Press 2019

      49 Mostafa Rahimnejad, "Improvement of sediment microbial fuel cell performance by application of sun light and biocathode" 한국화학공학회 33 (33): 154-158, 2016

      50 김병우, "Generation behavior of elctricity in a microbial fuel cell" 한국화학공학회 27 (27): 546-550, 2010

      51 Mostafa Ghasemi, "Evaluation of solvent dearomatization effect in heavy feedstock thermal cracking to light olefin: An optimization study" 한국화학공학회 30 (30): 1700-1709, 2013

      52 D. C. Montgomery, "Design and analysis of experiments" Wiley 2017

      53 Fatemeh Momtazan, "Application of copper sulfide nanoparticles loaded activated carbon for simultaneous adsorption of ternary dyes: Response surface methodology" 한국화학공학회 35 (35): 1108-1118, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-06-21 학술지명변경 한글명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineering -> Korean Journal of Chemical Engineering
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2007-09-03 학술지명변경 한글명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      외국어명 : The Korean Journal of Chemical Engineeri -> The Korean Journal of Chemical Engineering
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.92 0.72 1.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.15 0.94 0.403 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼