This study presents TabNet, a novel deep learning method, to enhance corporate credit rating accuracy amidst growing financial market uncertainties due to technological advancements. By analyzing data from major Korean stock markets, the research cons...
This study presents TabNet, a novel deep learning method, to enhance corporate credit rating accuracy amidst growing financial market uncertainties due to technological advancements. By analyzing data from major Korean stock markets, the research constructs a credit rating prediction model using TabNet. Comparing it with traditional machine learning, TabNet proves superior, achieving a Precision of 0.884 and an F1 score of 0.895. It notably reduces misclassification of high-risk companies as low-risk, emphasizing its potential as a vital tool for financial institutions in credit risk management and decision-making.